Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Natural vegetation restoration has emerged as an effective and rapid approach for ecological restoration in fragile areas. However, the response of soil microorganisms to natural succession remains unclear. To address this, we utilized high-throughput sequencing methods to assess the dynamics of soil bacterial and fungal communities during forest succession (shrubland, secondary forest, and primary forest) in a karst region of Southwest China. Our study revealed that bacterial α-diversity was significantly higher in secondary forest compared to both shrubland and primary forest. Intriguingly, the soil bacterial community in primary forest exhibited a closer resemblance to that in shrubland yet diverged from the community in secondary forest. Conversely, the soil fungal community underwent notable variations across the different forest stages. Furthermore, analysis of the microbial co-occurrence network revealed that, within these karst forests, the relationships among soil fungi were characterized by fewer but stronger interactions compared to those among bacteria. Additionally, soil properties (including pH, soil organic carbon, total nitrogen, moisture, and available potassium), soil microbial biomass (specifically phosphorus and nitrogen), and plant diversity were the drivers of soil bacterial community dynamics. Notably, soil pH accounted for the majority of the variations observed in the soil fungal community during karst forest succession. Our findings provide valuable insights that can inform the formulation of strategies for ecological restoration and biodiversity conservation in karst regions, particularly from a microbial perspective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596547PMC
http://dx.doi.org/10.3390/microorganisms12112136DOI Listing

Publication Analysis

Top Keywords

soil
13
forest succession
12
soil bacterial
12
secondary forest
12
primary forest
12
forest
10
soil properties
8
soil microbial
8
communities forest
8
karst region
8

Similar Publications

Vanadium (V) is a trace element in the environment; it is detected in soil, water, air, dust, and food products. V-containing compounds have shown therapeutic potential in the treatment of diabetes. However, studies on the effects of V on animal behavior remain limited and sporadic.

View Article and Find Full Text PDF

Rising atmospheric CO exposes plants to high-CO environments, while excessive nitrogen fertilizer use degrades soil, highlighting the need to reduce nitrogen input and cultivate vigorous cucumber seedlings under HC-LN conditions. Calcineurin B-like proteins (CBLs) sense calcium signals and regulate carbon/nitrogen metabolism via CBL-interacting protein kinases (CIPKs), though their roles in cucumber under HC-LN conditions are unclear. Here, we identified seven and 19 genes.

View Article and Find Full Text PDF

The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.

View Article and Find Full Text PDF

Specialized plant metabolism, particularly phenolic compound production, contributes significantly to the functioning and resilience of mountain ecosystems. Livestock grazing can influence phenolic production, with its effects varying depending on microclimatic factors and soil conditions. Despite the ecological significance of this process, the impact of livestock grazing on phenolic production in alpine plants remains insufficiently explored.

View Article and Find Full Text PDF

A Late Bronze Age foreign elite? Investigating mobility patterns at Seddin, Germany.

PLoS One

September 2025

Department of Research, Collections and Conservation, Environmental Archaeology and Materials Science, National Museum of Denmark, Kongens Lyngby, Denmark.

During the Late Bronze Age (ca. 11th-8th century BCE), far-reaching and extensive trade and exchange networks linked communities across Europe. The area around Seddin in north-western Brandenburg, Germany, has long been considered as at the core of one such networks.

View Article and Find Full Text PDF