Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article analyses the use of low-temperature PCMs in devices supplementing a room ventilation system to prevent the overcooling effect. In this study, the phase change is numerically simulated in an axisymmetric system consisting of two tubes. One is filled with RT11HC with an initial temperature of 0 °C, while air with an inlet temperature of 20 °C flows through the other, heating the PCM and causing it to melt. Calculations are performed using commercial software with the apparent heat method for a system of given dimensions. Spatial distributions of the system temperature and liquid volume fraction at different time moments (from 0 to 120 min) are determined. It is found that the results depended mainly on the method of determining the latent heat. For the beginning of the charging process ( < 40 min), the values of the liquid phase fraction determined by the H and S methods are similar, while the one determined by the G method is definitely higher (even three times at = 10 min). In turn, the outlet air temperature determined by the S method is lower than that determined by the other methods. The size and shape of the mesh have no significant effect on the results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595287PMC
http://dx.doi.org/10.3390/ma17225573DOI Listing

Publication Analysis

Top Keywords

phase change
8
temperature °c
8
determined methods
8
determined method
8
determined
5
analysis properties
4
properties thermal
4
thermal behavior
4
behavior low-temperature
4
low-temperature phase
4

Similar Publications

Understanding the evaporation mechanism of liquid ethanol and ethanol-water binary mixtures is important for numerous scientific and industrial processes. The amount of water in liquid water-ethanol mixtures can significantly affect how quickly ethanol molecules evaporate. Here, we study the mechanism and rate of evaporation of ethanol from pure liquid ethanol and ethanol/water binary mixtures through both unbiased molecular dynamics simulations and biased simulations using the umbrella sampling method.

View Article and Find Full Text PDF

Construction of Zeolite Framework-Anchored Rh-(O-Zn) Sites for Ethylene Hydroformylation.

J Am Chem Soc

September 2025

National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.

View Article and Find Full Text PDF

Background: Pulmonary hypertension (PH) is a systemic illness with increasingly subtle disease manifestations including sleep disruption. Patients with PH are at increased risk for disturbances in circadian biology, although to date there is no data on "morningness" or "eveningness" in pulmonary vascular disease.

Research Questions: Our group studied circadian rhythms in PH patients based upon chronotype analysis, to explore whether there is a link between circadian parameters and physiologic risk-stratifying factors to inform novel treatment strategies in patients with PH?

Study Design And Methods: We serially recruited participants from July 2022 to March 2024, administering in clinic the Munich Chronotype Questionnaire (MCTQ).

View Article and Find Full Text PDF

Imaging Valence Electron Rearrangement in a Chemical Reaction Using Hard X-Ray Scattering.

Phys Rev Lett

August 2025

Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

We have observed the signatures of valence electron rearrangement in photoexcited ammonia using ultrafast hard x-ray scattering. Time-resolved x-ray scattering is a powerful tool for imaging structural dynamics in molecules because of the strong scattering from the core electrons localized near each nucleus. Such core-electron contributions generally dominate the differential scattering signal, masking any signatures of rearrangement in the chemically important valence electrons.

View Article and Find Full Text PDF

Structural Evidence for the Spin Collapse in High Pressure Solid Oxygen.

Phys Rev Lett

August 2025

European Laboratory for Non Linear Spectroscopy (LENS), Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy and , via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.

Single crystal x-ray diffraction measurements have been carried out on epsilon oxygen up to 30 GPa to examine the behavior of the constituent (O_{2})_{4} units. An isostructural phase transition is evidenced by lattice parameter and intracluster (O_{8}) distance discontinuities and clear changes in the equation of state at 18.1±0.

View Article and Find Full Text PDF