Emerging Functions of Protein Tyrosine Phosphatases in Plants.

Int J Mol Sci

Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reversible protein phosphorylation, known as the "switch" of the cell, is controlled by protein kinases (PKs) and protein phosphatases (PPs). Based on substrate specificity, PPs are classified into protein serine/threonine phosphatases and protein tyrosine phosphatases (PTPs). PTPs can dephosphorylate phosphotyrosine and phosphoserine/phosphothreonine. In plants, PTPs monitor plant physiology, growth, and development. This review summarizes an overview of the PTPs' classification and describes how PTPs regulate various plant processes, including plant growth and development, plant hormone responses, and responses to abiotic and biotic stresses. Then, future research directions on the PTP family in plants are discussed. This summary will serve as a reference for researchers studying PTPs in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593807PMC
http://dx.doi.org/10.3390/ijms252212050DOI Listing

Publication Analysis

Top Keywords

protein tyrosine
8
tyrosine phosphatases
8
growth development
8
protein
6
ptps
5
emerging functions
4
functions protein
4
phosphatases
4
plants
4
phosphatases plants
4

Similar Publications

Sodium Orthovanadate (SOV) mitigates alcohol & alcohol plus high-fat diet (HFD)-induced hepatotoxicity in rats.

Cell Mol Biol (Noisy-le-grand)

September 2025

Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.

Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.

View Article and Find Full Text PDF

Background And Objectives: Deucravacitinib, a first-in-class, oral, selective, allosteric tyrosine kinase 2 inhibitor, demonstrated efficacy across the primary endpoint and all key secondary endpoints in the phase 2 PAISLEY SLE trial in patients with active systemic lupus erythematosus (SLE). Here, we describe 2 phase 3 trials [POETYK SLE-1 (NCT05617677), POETYK SLE-2 (NCT05620407)] which will assess the efficacy and safety of deucravacitinib in patients with active SLE. These phase 3 trials have been designed to replicate the successful elements of the phase 2 trial, including its glucocorticoid-tapering strategy and disease activity adjudication.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia and associated with severe complications, including cardiovascular diseases, neuropathy, nephropathy, and retinopathy. Although synthetic antidiabetic drugs are available, the side effects and limited long-term effectiveness of these medications highlight the urgent need for safer, more potent alternative therapies. L.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality, with "epidermal growth factor receptor (EGFR)" mutations playing a pivotal role in tumor progression and carcinogenesis. "Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)," such as Osimertinib, have significantly improved treatment outcomes by overcoming resistance mechanisms like the T790M mutation. However, Osimertinib's clinical application is limited by cardiotoxicity concerns, necessitating safer alternatives.

View Article and Find Full Text PDF

Microglial cells are key mediators of ethanol-induced neuroinflammation through the release of proinflammatory cytokines and activation of Toll-like receptors. Recently, the signaling pathway initiated by the interaction of the neurotrophic factors pleiotrophin (PTN) and midkine (MK) with receptor-type protein tyrosine phosphatase β/ζ (RPTPβ/ζ) has emerged as a pharmacological target in ethanol-induced neuroinflammatory and neurodegenerative processes. However, the underlying molecular mechanisms remain unclear.

View Article and Find Full Text PDF