A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enduring modulation of dorsal raphe nuclei regulates (R,S)-ketamine-mediated resilient stress-coping behavior. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ketamine may be a novel pharmacologic approach to enhance resilience and protect against stress-related disorders, but the molecular targets underlying this response remain to be fully characterized. The multifunctional protein p11 is crucial in the pathophysiology of depression and antidepressant responses. However, it is still unclear whether p11 plays a role in the pro-resilience effects induced by ketamine. Here, we demonstrated that prophylactic administration of ketamine buffers passive stress-induced maladaptive phenotypes induced by chronic stress exposure. Spatial neurotransmitter and metabolite analysis revealed that prophylactic ketamine was also effective in blunting stress-induced disturbances of tryptophan metabolism in dorsal raphe nuclei (DRN). Additionally, we demonstrated that ketamine prevented chronic restraint stress-induced p11 reduction in DRN, a highly p11-enriched region. Furthermore, we provide novel evidence indicating that p11 deficiency regulates susceptibility to stress-induced depression-related phenotypes, and these behavioral maladaptations are dependent, at least in part, on p11 function in serotonergic neurons. Spatial neurotransmitter and metabolite analysis also showed a reduction of tryptophan and dopamine metabolism in DRN of serotonergic p11-deficient mice. Viral-mediated downregulation of p11 within DRN induced a stress-susceptible phenotype. Finally, our results also unveiled that the ability of ketamine to elicit a pro-resilience response against stress-induced maladaptive phenotypes was occluded when p11 was selectively deleted in serotonergic neurons. Altogether, we showed a previously unexplored role of the DRN circuit in regulating stress susceptibility and resilience-enhancing actions of ketamine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092261PMC
http://dx.doi.org/10.1038/s41380-024-02853-6DOI Listing

Publication Analysis

Top Keywords

dorsal raphe
8
raphe nuclei
8
stress-induced maladaptive
8
maladaptive phenotypes
8
spatial neurotransmitter
8
neurotransmitter metabolite
8
metabolite analysis
8
serotonergic neurons
8
ketamine
7
p11
7

Similar Publications