98%
921
2 minutes
20
An amphiphilic cellulose () hydrogel was synthesized via grafting of quaternary ammonium groups onto cellulose. The structural properties of were characterized via Fourier transform infrared (FTIR)/C solid-state NMR spectroscopy, elemental (CHN) analysis, particle size distribution (PSD), thermogravimetric analysis (TGA), and wettability was assessed through contact angle measurements. Pickering emulsions of apolar oils in water were prepared using variable weights of the hydrogel as the stabilizing agent, along with different methods of agitation (mechanical shaking and sonication). The characterization results for provide support for the successful grafting of quaternary ammonium groups onto cellulose to produce hydrogels. Different methods of agitation of an oil/water mixture revealed the formation of an (O/W) Pickering emulsion that was stable to coalescence for over 14 days. The resulting emulsions showed variable droplet sizes and stability according to the dosage of in the emulsion and the agitation method, where the emulsion droplet size is related to the particle size of . The addition of methyl orange (MO), a probe to evaluate the phase partitioning of the dye, had minor effects on the emulsion droplet size, and the emulsion prepared with 0.8 wt.% of and agitated via sonication exhibited the smallest droplet size and greatest stability. This study is anticipated to catalyze further research and the development of low-cost and sustainable biopolymer hydrogels as stabilizers for tunable Pickering emulsion. Grafted cellulose materials of this type represent versatile stabilizing agents for foods, agrochemicals, and pharmaceutical products and technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593766 | PMC |
http://dx.doi.org/10.3390/gels10110685 | DOI Listing |
ACS Electrochem
September 2025
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Gothenburg 412 96, Sweden.
Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.
View Article and Find Full Text PDFVet World
July 2025
Research Center for Veterinary Science, National Research and Innovation Agency, Jl. Raya Bogor Km. 46 Cibinong, Bogor, 16911, West Java, Indonesia.
Streptococcosis, caused by , is a significant disease in tilapia farming that results in substantial economic losses. While vaccination is the most effective method for prevention, current vaccines face challenges when administered orally or through immersion, primarily due to poor absorption and degradation in the fish's digestive system. Nanotechnology offers new ways to improve vaccine delivery and effectiveness.
View Article and Find Full Text PDFLangmuir
September 2025
CIPR, KFUPM, Dhahran 31261, Saudi Arabia.
Emulsion formation presents a significant operational challenge in oil production, necessitating the continuous development of novel and effective demulsification methods. However, the lack of a fundamental understanding of the mechanisms that regulate the formation of these emulsions significantly complicates this process. In this study, we systematically investigated the influence of Ca ions on crude oil emulsions.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430
This study aimed to examine the impact of composite enzymatic treatment on the physicochemical properties of oat milk, which would provide an effective strategy to improve the stability of plant-based milk. Oat milks treated with individual α-amylase or in combination with the protein glutaminase were produced. The result indicated that composite enzyme treatment significantly changed the physicochemical properties and significantly improved the stability of oat milk.
View Article and Find Full Text PDFFood Res Int
November 2025
National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address: chichang
This study aimed to analyze the amino acid composition and characterize the sequences of collagen peptides from Skipjack tuna bones (TBCPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and further investigate the function and mechanism of action of TBCPs in nonalcoholic fatty liver disease (NAFLD). The results showed that TBCPs contain 16 types of amino acids, among which glycine is the most abundant, and hydrophobic amino acids account for 40.75 %.
View Article and Find Full Text PDF