Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lipid droplets (LD) are crucial in pathological processes or conditions associated with abnormal lipid metabolism, such as obesity, diabetes, atherosclerosis, fatty liver diseases, and cancers. Cancer cells frequently contain elevated levels of nonpolar lipid droplets (LDs), serving as energy reserves. The proliferation of LDs, accompanied by an increase in viscosity, is a characteristic feature of cancer cells that prompted us to devise a fluorescent sensor for LD detection at physiological pH. However, developing fluorescent LD-specific probes with high polarity sensitivity and deep tissue/cell imaging capability remains challenging. Therefore, we present a TICT probe with strong solvatochromism, superior response to viscosity, microenvironment sensitivity, and a large Stokes shift. Additionally, it offers numerous advantages, including high sensitivity, specificity, high fluorescence quantum yield, and remarkable spatial resolution, which enables precise monitoring of lipid droplets (LD). Thus, this probe can effectively monitor alterations in viscosity and polarity of lipid droplet expression in live cells, thereby offering the potential for visualizing physiological abnormalities or pathological conditions. The probe offers excellent lipid droplet targeting and also sensitively monitors the oleic-acid-mediated lipid droplet accumulation and immunosuppressant/inflammatory drugs in HeLa cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c00970DOI Listing

Publication Analysis

Top Keywords

lipid droplets
16
lipid droplet
12
tict probe
8
precise monitoring
8
lipid
8
cancer cells
8
fluorescent tict
4
probe
4
probe precise
4
monitoring cellular
4

Similar Publications

Genomic characterization of normal and aberrant human milk production.

Sci Adv

September 2025

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.

Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain low, often because of insufficient milk production. The molecular causes of low milk production are not well understood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum stages, were analyzed using genomic and microbiome techniques.

View Article and Find Full Text PDF

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

Advancements and perspectives on organelle-targeted fluorescent probes for super-resolution SIM imaging.

Chem Sci

September 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China

As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.

View Article and Find Full Text PDF

Regulation of Oomycete Autophagy, Lipid Droplet Accumulation and Pathogenesis by Three Rab GTPases.

Mol Plant Pathol

September 2025

National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.

Among eukaryotes, Rab GTPases are critical for intracellular membrane trafficking and possess various functions. Oomycetes, responsible for many devastating plant diseases, pose a significant threat to global agriculture. However, the functions of Rab GTPases in oomycetes are largely uncharted.

View Article and Find Full Text PDF

Introduction: Hepatocellular carcinoma (HCC) remains a major cause of cancer mortality, and effective therapeutic options are limited. MicroRNA‑372‑3p (miR‑372‑3p) has been implicated in HCC, yet its exact role is unclear.

Methods: We established miR‑372‑3p‑overexpressing HCC cell lines (HepG2, SNU‑449, JHH‑4) via lentiviral transduction.

View Article and Find Full Text PDF