98%
921
2 minutes
20
Incorporation of soil amendments with high organic carbon content (HCA) can reduce losses of mineral nitrogen (N) from agricultural soils. The magnitude of N immobilization and remobilization is strongly controlled by the availability of carbon (C) and phosphorus (P). However, the exact mechanisms and interactions between C, N, and P availability are poorly understood. An eight-month incubation experiment was conducted on recultivated mine soil with low organic C, mineral N and P background concentrations to investigate the effects of HCA in combination with C-labelled glucose and mineral P fertilization on greenhouse gas emissions, soil nutrient status (dissolved organic C (DOC), nitrate (NO), extractable P), and microbial biomass growth. The experiment had a factorial design of one N level × two P levels × six C treatments (control, wheat straw, poplar sawdust, glucose, and combinations of wheat straw or sawdust with glucose). The HCA increased the cumulative CO and CH emissions but decreased NO emission, except for wheat straw. Addition of C-labelled glucose decreased the cumulative CH emission by 59 and 85 % in the sawdust and sawdust + P treatment, respectively. Glucose application reduced the NO content in the HCA-amended soil by 26-64 %, while P fertilizer further decreased the NO content in the wheat straw and sawdust treatments by 20 and 24 %, respectively. Both HCA and glucose treatments promoted microbial biomass growth and reduced the soil mineral N content. The δC of microbial biomass (δC) showed an increasing trend during the whole experiment, although C-labelled glucose was added only once at the beginning of the experiment. Addition of HCA decreased δC, while P addition had the opposite effect. In conclusion, adding a readily available C source to HCA may increase the efficacy of retaining N in post-harvest soils, particularly of more recalcitrant types of HCA like sawdust.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10256016.2024.2423797 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India. Electronic address:
Multifunctional polymers derived from waste biomass are under intense global investigation for wastewater remediation owing to their environmental advantages. Therefore, this study reports the synthesis of a novel polyamidoxime-co-polyethyleneimine multifunctional cellulose, which was used as an adsorbent for the removal of acidic dye pollutants. Morphological, structural, and surface studies were performed using several techniques.
View Article and Find Full Text PDFSci Total Environ
September 2025
School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India. Electronic address:
Biochar-based slow-release fertilizers (BSRFs) offer a promising alternative to conventional fertilizers by enhancing nutrient retention and reducing environmental loss. This study aimed to develop a sustainable and cost-effective BSRF through the co-pyrolysis of wheat straw (WS), bentonite and nutrient solution containing KHPO and KNO. WS and bentonite were blended in 50:50 and 70:30 ratios with fixed doses of nutrients, then co-pyrolyzed (at 350 °C and 500 °C) to produce BSRFs.
View Article and Find Full Text PDFJ Dairy Sci
September 2025
Department of Ruminant Science, Institute of Animal Sciences, The Volcani Institute, Rishon LeZion 7505101, Israel. Electronic address:
Several factors influence the effectiveness of forage in ruminant rations, including NDF content and the physical nature, fragility, digestibility, and more of the forage. Recently, several studies suggested using the undigestible NDF (uNDF) fraction as a possible approach to achieve a more precise ration. The objective of the current study was to reduce the forage content of the diet by using the in vitro forage uNDF for diet formulation and to determine the effects on production, rumen environment, and digestibility.
View Article and Find Full Text PDFJ Dairy Sci
September 2025
Department of Animal Sciences, University of Illinois, Urbana, IL 61801. Electronic address:
This experiment was conducted to determine the effects of feeding rumen-protected Met (RPM; KESSENT M, Kemin Industries Inc., Des Moines, IA) and rumen-protected Lys (RPL; LysiGEM, Kemin Industries Inc., Des Moines, IA) prepartum at the same AA-to-ME ratio (3.
View Article and Find Full Text PDFPlants (Basel)
August 2025
College of Natural Resources and Environment, Northwest A&F University/Key Lab of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating with optimized water and fertilizer management. We conducted a field experiment to determine the positive effects of planting legume GM in the summer fallow on the yield, WUE, and nitrogen uptake efficiency (NupE) of subsequent winter wheat, which was grown with plastic film mulching and integrated fertilization in the Loess Plateau of China. A split-plot-designed experiment was arranged with two main treatments, namely (1) wheat planting followed by GM planting in the summer fallow (GM) and (2) conventional wheat monoculture followed by bare land summer fallow (BL), and three sub-treatments: (1) control treatment without any chemical fertilizer (Ct), (2) application of chemical N, P, and K as basal fertilizer (B), and (3) application of basal fertilizer plus wheat straw return (BS).
View Article and Find Full Text PDF