98%
921
2 minutes
20
Recently, we have reported that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates neurofibromin 2 (NF2, also known as merlin) at serine (S) 10 site. Since NF2 inhibits p21-activated kinase 1 (PAK1)-mediated nuclear factor-κB (NF-κB) activation, in the present study, we investigated the role of PLPP/CIN-mediated NF2 S10 dephosphorylation in lipopolysaccharide (LPS)-induced neuroinflammation and explored its related signaling pathways in the mouse hippocampus. PLPP/CIN overexpression increased NF2 S10 dephosphorylation and PAK1 S204 autophosphorylation under physiological condition, which were reversed by PLPP/CIN deletion. Following LPS injection, PLPP/CIN overexpression exacerbated microglial activation, although microglial PLPP/CIN expression was undetectable. In addition, PLPP/CIN overexpression enhanced PAK1 and NF-κB phosphorylations, and upregulated cyclooxygenase-2 (COX-2) and prostaglandin E synthase 2 (PTGES2) expressions in CA1 neurons. PLPP/CIN overexpression also augmented microglial interleukin-1β induction. PLPP/CIN ablation and 1,1'-dithiodi-2-naphthtol (IPA-3, a PAK1 inhibitor) pretreatment ameliorated these LPS-induced neuroinflammatory responses. These findings indicate that PLPP/CIN-mediated NF2 S10 dephosphorylation may facilitate PAK1-NF-κB-COX-2-PTGES2 signaling pathway in CA1 neurons, which would subsequently exaggerate immune response of microglia following LPS treatment. Therefore, our findings suggest that this PLPP/CIN-mediated neuron-microglia interaction may play an important role in the pathogenesis of inflammation-related neurological diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2024.149345 | DOI Listing |
Brain Res
February 2025
Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea. Electronic address:
Recently, we have reported that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates neurofibromin 2 (NF2, also known as merlin) at serine (S) 10 site. Since NF2 inhibits p21-activated kinase 1 (PAK1)-mediated nuclear factor-κB (NF-κB) activation, in the present study, we investigated the role of PLPP/CIN-mediated NF2 S10 dephosphorylation in lipopolysaccharide (LPS)-induced neuroinflammation and explored its related signaling pathways in the mouse hippocampus. PLPP/CIN overexpression increased NF2 S10 dephosphorylation and PAK1 S204 autophosphorylation under physiological condition, which were reversed by PLPP/CIN deletion.
View Article and Find Full Text PDFJ Neuroinflammation
April 2023
Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea.
Background: Pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates serine (S) 10 site on neurofibromin 2 (NF2, also known as merlin (moesin-ezrin-radixin-like protein) or schwannomin). p21-activated kinase 1 (PAK1) is a serine/threonine protein kinase, which is involved in synaptic activity and plasticity in neurons. NF2 and PAK1 reciprocally regulate each other in a positive feedback manner.
View Article and Find Full Text PDFExp Neurol
September 2020
Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea. Electronic address:
In the brain, murine double minute-2 (Mdm2), an E3-ubiquitin ligase, modulates neuronal excitability by regulating glutamate receptor and postsynaptic density 95 (PSD95) levels through ubiquitination. Thus, Mdm2 is relevant to epileptic seizures in human patients. Although phosphorylation at serine (S) 166 site by AKT increases Mdm2 activity, phosphatases of Mdm2 have been still elusive.
View Article and Find Full Text PDFCell Death Dis
July 2019
Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, 24252, South Korea.
Neuronal precursor cell expressed developmentally downregulated 4-2 (NEDD4-2) is an E3 ubiquitin ligase to regulate ion transport by controlling cellular trafficking/endocytosis and lysosomal degradation of ion channels and transporters. Thus, NEDD4-2 is relevant to neuronal excitability and epileptic encephalopathies in human patients. However, the regulatory molecules for NEDD4-2 dephosphorylation have been still elusive.
View Article and Find Full Text PDF