98%
921
2 minutes
20
An increasing number of expression quantitative trait loci (eQTLs) have been linked to tumorigenesis. In this study, we used Mendelian randomization (MR) to identify a novel cancer susceptibility gene, Trimethylguanosine Synthase 1 (TGS1). TGS1-induced hypermethylation at the 5' end of human telomerase RNA (hTR) impedes hTR accumulation, decreasing telomerase assembly factor levels and thus limiting telomere elongation, a crucial factor in tumor progression. Despite its significant role in cancer development, the TGS1-cancer relationship requires further experimental validation and bioinformatics analysis. To bridge this knowledge gap, we performed a comprehensive pan-cancer study using MR to evaluate TGS1's involvement in cancer progression. Leveraging data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we analyzed TGS1's role in 33 tumor types. The results indicated higher TGS1 expression in most tumors, with a significant correlation to patient prognosis. We also noted variations in TGS1 phosphorylation at different sites and a strong link between TGS1 expression and the infiltration of various immune cells. In addition, our enrichment analysis of TGS1-associated genes shed light on the molecular mechanisms involved. The study also highlighted TGS1's significant role in cellular apoptosis. Overall, our findings offer an in-depth analysis of TGS1's oncogenic roles across multiple tumor types and underscore its potential as an oncogene, biomarker, and gene therapy target in diverse cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.137862 | DOI Listing |
Int J Biol Macromol
January 2025
The Second Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, PR China; Children's Medical Center, The Second Hospital of Shandong University, Jinan 250033, PR China. Electronic address:
An increasing number of expression quantitative trait loci (eQTLs) have been linked to tumorigenesis. In this study, we used Mendelian randomization (MR) to identify a novel cancer susceptibility gene, Trimethylguanosine Synthase 1 (TGS1). TGS1-induced hypermethylation at the 5' end of human telomerase RNA (hTR) impedes hTR accumulation, decreasing telomerase assembly factor levels and thus limiting telomere elongation, a crucial factor in tumor progression.
View Article and Find Full Text PDFLancet Microbe
September 2024
Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group, University of Leicester, Leicester, UK; National Institute for Health and Care Research Leicester Biomedical Research Centre, Leicester, UK. Electronic address:
Background: High proportions of Mycobacterium tuberculosis cells in sputum containing triacylglycerol-rich lipid bodies have been shown to be associated with treatment failure or relapse following antituberculous chemotherapy. Although lipid body determination is a potential biomarker for supporting clinical trial and treatment decisions, factors influencing variability in sputum frequencies of lipid body-positive (%LB) M tuberculosis in patients are unknown. We aimed to test our hypothesis that exposure to host-generated NO and M tuberculosis strains are factors associated with differences in sputum %LB.
View Article and Find Full Text PDFNucleic Acids Res
August 2024
School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
The Cajal body, a nuclear condensate, is crucial for ribonucleoprotein assembly, including small nuclear RNPs (snRNPs). While Coilin has been identified as an integral component of Cajal bodies, its exact function remains unclear. Moreover, no Coilin ortholog has been found in unicellular organisms to date.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2024
Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India. Electronic address:
PRIP Interacting protein with Methyl Transferase domain (PIMT/TGS1) is an integral upstream coactivator in the peroxisome proliferator-activated receptor gamma (PPARγ) transcriptional apparatus. PPARγ activation alleviates insulin resistance but promotes weight gain. Herein, we show how PIMT regulates body weight while promoting insulin sensitivity in diet induced obese mice.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2024
Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life sciences, University of Hyderabad Campus, Hyderabad 500046, Telangana, India. Electronic address:
Macrophage-driven chronic low-grade inflammatory response is intimately associated with pathogenesis of insulin resistance and type 2 diabetes (T2D). However, the molecular basis for skewing of pro-inflammatory macrophage is still elusive. Here, we describe the mechanism and significance of TGS1/PIMT (PRIP-Interacting protein with Methyl Transferase domain) in regulating macrophage activation and polarization and its impact on the development of insulin resistance in skeletal muscle cells.
View Article and Find Full Text PDF