Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Spent LiNiCoMnO (x + y + z = 1) and polyethylene terephthalate are major solid wastes due to the growing Li-ion battery market and widespread plastic usage. Here we propose a synergistic pyrolysis strategy to recover valuable metals by thermally treating LiNiCoMnO and polyethylene terephthalate. With polyethylene terephthalate assistance, LiNiCoMnO decomposes at 400 °C, and fully converts to LiCO, MnO, and Ni-Co alloy at 550 °C within 30 min, using a 1.0:0.3 mass ratio of LiNiCoMnO to polyethylene terephthalate. Furthermore, density functional theory calculations confirm the preference for O-Li bonding. Surface adsorption and free radical/gaseous reduction reactions explain the role of polyethylene terephthalate in promoting lattice destruction. The complete decomposition facilitates efficient post-treatment, achieving over 99% recovery of Li, Ni, Co, and Mn via water washing. Regenerated LiNiCoMnO was synthesized by using recovered Li- and transition metal-containing products as feedstocks. This study provided a chemical-free, energy-saving, and scalable recovery strategy while addressing polyethylene terephthalate waste minimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585579 | PMC |
http://dx.doi.org/10.1038/s44172-024-00317-x | DOI Listing |