98%
921
2 minutes
20
The excessive heat accumulation has been the greatest danger for chips to maintain the computing power. In this paper, a passive thermal management strategy for electronics cooling was developed based on the water vapor desorption process of the covalent organic frameworks (COFs). The precise regulation for the number of carbonyl group and the ratio of hydrophilicity and hydrophobicity within pore channels was achieved by water adsorption sites engineering. In particular, COF-THTA with abundant water adsorption sites exhibited highest water uptake and desorption energy, which facilitate efficient cooling of electronics. In proof-of-concept testing, COF-THTA coating (40×40 mm) provided a temperature drop of 7.5 °C in 25 minutes at a heating power of 937.5 W/m, and remained stable after 10 intermittent heat cycles. Furthermore, the equivalent enthalpy of COF-THTA coating can reach up to 1136 J/g. In real application scenarios, COF-THTA coating improved the performance of two real computing devices by 26.73 % and 22.61 %, respectively. This strategy based on COFs provides a new thinking for passive thermal management, exhibiting great potential in efficient cooling of electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202402441 | DOI Listing |
Langmuir
September 2025
Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana 59717, United States.
Global challenges posed by freshwater scarcity and the water-energy nexus drive demand for novel macromolecular design of tailored nanostructures endowed with a variety of hydrophilic and hydrophobic features. Offering potential to meet this demand, metal-organic framework (MOF) materials are synthesized from coordinated formations that create versatile reticular structures with variable water adsorption affinities. However, advances in the fundamental understanding of water interactions within these structures are impeded by the failure of classical analyses to identify mechanisms of interaction, connect fundamental isotherm types, and provide appropriate benchmarks for assessment.
View Article and Find Full Text PDFNano Lett
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Constructing heterogeneous dual-site catalysts is anticipated for oxygen evolution reaction (OER). However, compared to the adsorbate evolution mechanism (AEM), the triggering oxide pathway mechanism (OPM) for catalysts poses challenges due to elusive structural evolution and low intrinsic activity. Herein, considering the distinct adsorption propensity of heterogeneous Ni-Fe sites toward differential intermediates (OH-O), the PO-induced deep reconstruction triggers a dual-site Ni-Fe discrepant oxide pathway mechanism (DOPM) for R-PO-NiCoFeOOH.
View Article and Find Full Text PDFNanoscale Adv
August 2025
School of Electronic Science, Odisha University of Technology and Research Bhubaneswar India.
A novel electrocatalyst, zirconium ferrite nanoparticles (NPs) (ZrFeO NPs), was synthesized through coprecipitation and calcination processes at 300 °C and 500 °C using iron rust. The ZrFeO NPs were used as catalysts for the hydrogen evolution reaction. Furthermore, these NPs in an alkaline medium exhibited superior properties of a fractional order supercapacitor, based on which a prototype device was fabricated to demonstrate its energy storage applications.
View Article and Find Full Text PDFFront Microbiol
August 2025
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
Introduction: Manganese-oxidizing bacteria (MOB) play a critical role in converting soluble Mn(II) to insoluble Mn(III/IV) oxides, which have been widely applied for environmental remediation, particularly in heavy metal pollution control. Therefore, the discovery of novel MOB strains is of great significance for advancing pollution mitigation and ecosystem restoration.
Methods: In this study, a manganese-oxidizing bacterial strain was isolated from Mn-contaminated soil near an electroplating factory using selective LB medium supplemented with 10 mmol/L manganese chloride (MnCl), and the Leucoberbelin Blue (LBB) assay was employed to screen and identify strains with strong Mn(II)-oxidation ability.
ACS Omega
September 2025
Research Laboratory in bionanomaterials, LPbio, Department of Chemistry, Federal University of Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
Herein, it is reported the synthesis of a niobium-based metal-organic framework (MOF), [Nb-(Bez-(COO))] , for the extraction of caffeine from surface waters. The material was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis, which confirmed the coordination between the ligand (1,4-benzenodicarboxylic, (Bez-(COO))) and niobium (Nb) with a morphology composed of hexagonal rods, high crystallinity, and a surface area of 94.7 m g.
View Article and Find Full Text PDF