Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diffusion equation (DE) imaging processing is promising to enhance images showing lesions of bone metastasis (LBM). The Perona-Malik diffusion (PMD) model, which has been widely used and studied, is an anisotropic diffusion processing method to denoise or extract objects from an image effectively. However, the smoothing characteristics of PMD or its related method hinder extraction and enhancement of soft tissue regions of medical image such as computed tomography (CT), typically leaving an indistinct region with ambient tissues. Moreover, PMD expands the border region of the objects. A novel diffusion methodology must be used to enhance the LBM region effectively.For this study, we originally developed a DE quantification (DEQ) method that uses a filter function to selectively provide modulated diffusion according to the original locations of objects in an image. The structural similarity index measure (SSIM) and Lie derivative image analysis-value map were used to evaluate image quality and processing.We determined superellipse function with its ordern=4as a better performing filter for the LBM region. DEQ was found to be more effective at contrasting LBM for various LBM CT images than PMD or its improved models when the filter was a positive exponential similar function. DEQ yields enhancement agreeing with the indications of positron emission tomography despite complex LBM comprising osteoblastic, osteoclastic, mixed tissues, and metal artifacts, which is innovative. Moreover, DEQ retained high quality of image (SSIM> 0.95), and achieved a low mean value of the-value (<0.001), indicative of our intended selective diffusion compared to other PMD models.Our method improved the visibility of mixed tissue lesions, which can assist computer visional framework and can help radiologists to produce accurate diagnose of LBM regions which are frequently overlooked in radiology findings because of the various degrees of visibility in CT images.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad965cDOI Listing

Publication Analysis

Top Keywords

diffusion equation
8
bone metastasis
8
objects image
8
lbm region
8
diffusion
6
lbm
6
image
6
equation quantification
4
quantification selective
4
selective enhancement
4

Similar Publications

Fixed-node diffusion quantum Monte Carlo (FN-DMC) is a widely trusted many-body method for solving the Schrödinger equation, known for its reliable predictions of material and molecular properties. Furthermore, its excellent scalability with system complexity and near-perfect utilization of computational power make FN-DMC ideally positioned to leverage new advances in computing to address increasingly complex scientific problems. Even though the method is widely used as a computational gold standard, reproducibility across the numerous FN-DMC code implementations has yet to be demonstrated.

View Article and Find Full Text PDF

Rethinking the Kohn-Sham inverse problem.

J Chem Phys

September 2025

Theoretical Physics IV, University of Bayreuth, 95447 Bayreuth, Germany.

Density functional theory (DFT) is a cornerstone of modern electronic structure theory. In the Kohn-Sham scheme, the many-electron Schrödinger equation is replaced by a set of effective single-particle equations. Thus, the full complexity of the quantum mechanical many-particle effects is mapped to the exchange-correlation potential vxc(r).

View Article and Find Full Text PDF

Correlations Between Textural Properties of Potato Chips and Diffusion Coefficients of Frying Oils.

J Texture Stud

October 2025

Faculty of Chemical-Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, Sarıyer, Istanbul, Türkiye.

In this study, potato slices were fried in four different vegetable oils (corn, olive, palm olein, and sunflower) to investigate how oil type influences the characteristics of potato chips. The diffusion coefficient of oils was attempted to be correlated with the final moisture, oil uptake, and textural parameters of potato chips. The diffusion coefficients were determined using two approaches.

View Article and Find Full Text PDF

Objectives: To explore the key role of myeloid-derived suppressive cells (MDSCs) in pre-metastatic niche (PMN) and analyze their interrelationships with the main components in the microenvironment using a mathematical model.

Methods: Mathematical descriptions were used to systematically analyze the functions of MDSCs in tumor metastasis and elucidate their association with the major components (vascular endothelial cells, mesenchymal stromal cells, and cancer-associated macrophages) contributing to the formation of the pre-metastatic microenvironment. Based on the formation principle of the pre-metastatic microenvironment of tumors, the key biological processes were assumed to construct a coupled partial differential diffusion equation model.

View Article and Find Full Text PDF

Purpose: Diffusion-weighted imaging (DWI) and intravoxel incoherent motion (IVIM) imaging are well-established approaches for evaluating cerebrospinal fluid (CSF) flow in subarachnoid and perivascular spaces, and have recently been applied to study ventricular CSF flow. However, DWI does not directly measure flow velocity, and the physical implications of DWI measurements are unclear. This study aimed to provide a theoretical interpretation of the DWI and IVIM imaging of CSF flow velocity fields.

View Article and Find Full Text PDF