Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Electronic skin (E-skin) has attracted considerable attention for simulating the human sensory system for use in prosthetics, human-machine interactions, and healthcare monitoring. However, it is still challenging to fully mimic the skin function that can de-couple stimuli such as normal/tangential forces, contact/non-contact behaviors, and react to high-frequency inputs. Herein, we propose fully bionic E-skin (FBE-skin), which consists of a magnetized micro-cilia array (MMCA), a micro-dome array (MDA), and flexible electrodes to completely duplicate the hairy layer, epidermis/dermis interface, and subcutaneous mechanoreceptors of human skin. The optimized MDA and interdigital electrode enable the FBE-skin to perceive static forces with a linear sensitivity of 96.6 kPa up to 100 kPa, while the branch of electromagnetic induction allows the FBE-skin to sensitively capture dynamic stimuli with vibrating signals up to 100 Hz. The top-down integration of MDA and MMCA not only replicates the three-dimensional structure of human skin, but also synergistically provides the FBE-skin with bionic rapidly adapting (RA) and slowly adapting (SA) receptors. Consequently, the FBE-skin is capable of perceiving dynamic/static, normal/tangential, and contact/non-contact stimuli with a broad range of working pressures and frequencies. We expect that the design of FBE-skin will be promising for widespread applications from intelligent sensing to human-machine interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4mh01217h | DOI Listing |