98%
921
2 minutes
20
Unlabelled: This study delves into the genetic mechanisms underlying seed coat color variation in cowpeas [L.] Walp.), a trait with significant implications for nutritional value, consumer preference, and adaptation to environmental stresses. Through a genome-wide association study (GWAS) involving cowpea accessions exhibiting red, green, and blue seed coats, we identified 16 significant single nucleotide polymorphisms (SNPs) distributed across chromosomes 3, 4, 5, 9, 10, and 11. Our analysis highlighted the polygenic nature of seed coat color, emphasizing the shared SNP loci across different colors, suggesting integrated genetic influence or linked inheritance patterns, especially on chromosomes 9 and 10. We highlighted candidate genes, including Pentatricopeptide repeat family (PPR), Lupus La-related protein/La-related protein 1, and Udp-glycosyltransferase 71b2-related genes on chromosome 9, and MYB-like DNA-binding (MYB) genes on chromosome 10, all of which are implicated in pigment biosynthesis and regulatory pathways crucial to seed coat coloration and plant physiological processes. Our results corroborate previous findings linking seed coat color to the anthocyanin biosynthesis pathway and reveal the complex genetic architecture and phenotypic plasticity inherent in cowpeas. The overlap in quantitative trait loci (QTL) regions across different seed coat colors points to a shared genetic basis, potentially enabling the manipulation of seed coat color to enhance the nutritional profile and marketability of cowpeas.
Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01516-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576706 | PMC |
http://dx.doi.org/10.1007/s11032-024-01516-2 | DOI Listing |
PLoS One
September 2025
Satellite Collections North, Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Malchow/Poel, Germany.
Treatment of seeds with cold atmospheric pressure plasma (CAPP) is in its proof-of-concept phase with regard to its effect on germination and plant growth. To increase the germination of hardseeded red clover (Trifolium pratense L.), seeds are usually scarified, which is time-consuming and labour-intensive.
View Article and Find Full Text PDFFront Plant Sci
September 2025
College of Life Sciences, Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China of Ministry of Education, Shaanxi Normal University, Xi'an, China.
Plant seeds have evolved diverse dormancy types and regulatory mechanisms to adapt to environmental conditions and seasonal changes. As a commonly used rootstock for cultivated pears, faces challenges in seedling production and large-scale cultivation due to limited understanding of seed dormancy mechanisms. In this study, we report that seeds exhibit non-deep physiological dormancy, with seed coats playing a pivotal regulatory role.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China. Electronic address:
Seeds of Sophora japonica in Nanjing during the recommended period typically exhibit permeable seed coats. It is imperative to comprehend the water absorption characteristics of the permeable seeds, as water uptake represents a critical step in seed germination. This study employed an integrated approach combining blocking experiments, scanning electron microscopy, staining tests, and magnetic resonance imaging to investigate water entry sites and movement patterns in permeable seeds.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, U.K.
This study evaluated the nutritional and antinutritional (ANFs) composition and protein profiles of different components of Ramon () seed, including the seed coat, fruit, and both roasted and green (unprocessed) seeds. Proximate composition, mineral content, ANFs quantification, amino acid profile, protein digestibility, SDS-PAGE, proteomics, and gluten ELISA were performed. Protein contents ranged from 9.
View Article and Find Full Text PDFFront Plant Sci
August 2025
London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
Many market classes of common beans () have a significant reduction in crop value due to the postharvest darkening of the seed coat. Seed coat darkening is caused by an elevated accumulation and oxidation of proanthocyanidins (PAs). In common bean, the major color gene encodes for a bHLH protein with its allele controlling the postharvest slow darkening seed coat trait.
View Article and Find Full Text PDF