A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dynamic tunable nonreciprocal single-photon scattering mediated by a giant atom assisted with a time-modulated cavity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nonreciprocal single-photon scattering in a one-dimensional waveguide coupled to a giant two-level atom assisted with a time-modulated single-mode cavity is investigated. The analytic expressions of the single-photon scattering amplitudes are derived by using an effective Floquet Hamiltonian in real space. The scattering characteristics are discussed detail in both the Markovian and the non-Markovian regimes, and the corresponding conditions for achieving perfect nonreciprocal single-photon transmission are obtained. In the Markovian regime, a frequency-tunable single-photon diode with an ideal transmission contrast ratio can be realized by adjusting the frequency of the cavity mode, the local coupling phase difference, and the accumulated phase between the two coupling points. Furthermore, the influence of the intrinsic energy dissipations on the photon transport is discussed in detail. It is found that the dissipations of the cavity and the giant atom affect discriminatively the nonreciprocal single-photon scattering process. In the non-Markovian regime, the influence of the non-Markovian retarded effect induced by the time delay on the nonreciprocal single-photon scattering is discussed in detail. The results reveal that, although the retarded effect leads to a complex nonreciprocal scattering spectrum, dynamic tunable perfect nonreciprocal transmission with more abundant physical phenomena suitable for photons with different frequencies within a larger range can also be achieved. Such a nonreciprocal single-photon device can be used as an elementary unit for various quantum information processing and may have potential applications in quantum network engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.534762DOI Listing

Publication Analysis

Top Keywords

nonreciprocal single-photon
24
single-photon scattering
20
discussed detail
12
dynamic tunable
8
nonreciprocal
8
single-photon
8
giant atom
8
atom assisted
8
assisted time-modulated
8
perfect nonreciprocal
8

Similar Publications