A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Modal phase-matching in thin-film lithium niobate waveguides for efficient generation of entangled photon pairs. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thin-film lithium niobate (TFLN) waveguides have emerged as a pivotal platform for on-chip spontaneous parametric down-conversion (SPDC), serving as a crucible for the generation of entangled photon pairs. The periodic poling of TFLN, while capable of generating high-efficiency SPDC, demands intricate fabrication processes that can be onerous in terms of scalability and manufacturability. In this work, we introduce a novel approach to the generation of entangled photon pairs via SPDC within TFLN waveguides, harnessing the principles of modal phase-matching (MPM). To address the challenge of efficiently exciting pump light typically in a higher-order mode, we have engineered a mode converter that couples two asymmetrically dimensioned waveguides. This converter adeptly transforms the fundamental mode into a higher-order mode, demonstrating a conversion loss of 1.55 dB at 785 nm with a 3 dB bandwidth exceeding 30 nm. Subsequently, we have showcased the device's capabilities by characterizing the pair generation rate (PGR), coincidences-to-accidentals ratio (CAR), and spectral profile of the entangled photon source. Our findings present a simplified and versatile method for the on-chip generation of entangled photon sources, which may pave the way for the application in the realms of quantum information processing and communication technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.539105DOI Listing

Publication Analysis

Top Keywords

entangled photon
20
generation entangled
16
photon pairs
12
modal phase-matching
8
thin-film lithium
8
lithium niobate
8
tfln waveguides
8
higher-order mode
8
generation
5
entangled
5

Similar Publications