98%
921
2 minutes
20
Background: The Dual-task Augmented Reality Treatment (DART) trial recently established that dual-task training (DTT) delivered by a physical therapist or the augmented reality DART platform was effective in improving spatiotemporal gait parameters under single- and dual-task conditions in individuals with Parkinson's disease (PD). Data regarding postural stability were not reported in the primary outcome manuscript.
Objective: The aim of this secondary analysis was to compare the effects of a Traditional DTT intervention delivered by a physical therapist and DTT delivered by the DART platform on postural stability, functional mobility, and turning in individuals with PD. It was hypothesized that both groups would experience similar improvements.
Methods: Forty-seven individuals with PD were randomized to an 8-week (16 sessions) Traditional DTT or DART intervention. The limits of stability test and the instrumented Timed Up and Go (TUG) under single- and dual-task conditions were gathered at Baseline, End of Treatment (EOT), and 8-weeks after EOT.
Results: At EOT, the Traditional DTT and DART groups experienced a 9 % and 14 % improvement in maximal excursion area and a 7 % and 12 % improvement in total TUG time under dual-task conditions, respectively (p<0.05). Turn duration and average and peak turn velocity during the TUG improved for both groups under single- and dual-task conditions at EOT. Improvements in turn duration (dual-task) and average turn velocity (single- and dual-task) persisted 8-weeks after intervention cessation.
Conclusion: Improvements in postural stability, functional mobility, and turning under single- and dual-task conditions following traditional and DART DTT in individuals with PD indicate that cognitive-motor training can be used to effectively treat postural instability in this population. Improvements in the DART group were similar to traditional DTT, supporting our previous data demontrating that DART is an effective digital therapeutic to improve gait and postural instability in individuals with PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2024.11.007 | DOI Listing |
Nurse Educ Pract
September 2025
Department of Allied Health Education and Digital Learning, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, ROC. Electronic address:
Aim: To evaluate the effectiveness of the CARES-MFW (Clinical Augmented Reality Education Simulation for Malignant Fungating Wounds) app in enhancing nurses' knowledge and clinical reasoning in the care of MFWs.
Background: Malignant fungating wounds (MFWs) affect many patients with advanced cancer, with nearly 50 % dying within six months of diagnosis. These wounds often present with heavy exudate, pain, malodor and bleeding, leading to profound physical and psychosocial distress.
ObjectiveThis work examined performance costs for a spatial integration task when two sources of information were presented at increasing eccentricities with an augmented-reality (AR) head-mounted display (HMD).BackgroundSeveral studies have noted that different types of tasks have varying costs associated with the spatial proximity of information that requires mental integration. Additionally, prior work has found a relatively negligible role of head movements associated with performance costs.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
School of Applied Sciences and Technology, Gujarat Technological University, Gujarat, India. Electronic address:
This chapter examines advancements and future trajectories in wearable biosensing technologies, a multidisciplinary field encompassing healthcare, materials science, and information technology. Wearable biosensors are revolutionizing real-time physiological and biochemical monitoring with applications in personalized health monitoring, disease diagnosis, fitness, and therapeutic interventions. In addition to Internet of Things (IoT) and wireless connectivity technologies such as Bluetooth Low Energy (BLE) and 5G, which facilitate transparent remote monitoring and data exchange, other notable innovations such as machine learning and artificial intelligence enhance real-time processing of data, predictive analytics, and personalized healthcare solutions.
View Article and Find Full Text PDFKorean J Med Educ
September 2025
Clinical Skills Department and IMU Centre of Education, IMU University, Bukit Jalil, Malaysia.
Ergonomics
September 2025
Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
Augmented reality (AR) integrates virtual objects in the real world, allowing users to interact intuitively with navigation information. This study systematically reviewed 13 articles on AR technology published from 2005 to 2024 through meta-analysis, comprising a total of 400 participants, to examine its effectiveness in enhancing navigation performance. Compared with traditional navigation tools, the results showed that AR technology more effectively enhances navigation performance, with the overall effect size calculated as 0.
View Article and Find Full Text PDF