98%
921
2 minutes
20
The reactivity of the V[triple bond, length as m-dash]C Bu multiple bonds in the complex (dBDI)V[triple bond, length as m-dash]C Bu(OEt) (C) (dBDI = ArNC(CH)CHC(CH)NAr, Ar = 2,6- PrCH) with unsaturated substrates such as N[triple bond, length as m-dash]CR (R = Ad or Ph) and P[triple bond, length as m-dash]CAd leads to the formation of rare 3d transition metal compounds featuring α-aza-vanadacyclobutadiene, (dBDI)V(κ- , - BuC(R)N) (R = Ad, 1; R = Ph, 2) and β-phospha-vanadacyclobutadiene moieties, (dBDI)V(κ- , - BuPAd) (3). Complexes 1-3 are characterized using multinuclear and multidimensional NMR spectroscopy, including the preparation of the 50% N-enriched isotopologue (dBDI)V(κ- , - BuCC(Ad)N) (1-N). Solid-state structural analysis is used to determine the dominant resonance structures of these unique pnictogen-based vanadacyclobutadienes. A systematic comparison with the known vanadacyclobutadiene (dBDI)V(κ- , - BuC(H) Bu) (4) is also presented. Theoretical investigations into the electronic structure of 2-4 highlight the crucial role of unique V-heteroatom interactions in stabilizing the vanadacyclobutadienes and identify the most dominant resonance structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575583 | PMC |
http://dx.doi.org/10.1039/d4sc05884d | DOI Listing |
J Comput Chem
September 2025
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Leipzig University, Leipzig, Germany.
We investigated primary and secondary geometric isotope effects (H, D, T) on charge-inverted hydrogen bonds (CIHB) and dihydrogen bonds (DHB) using nuclear-electronic orbital density functional theory (NEO-DFT). The dianionic but electrophilic boron cluster [BH] served as a bonding partner, exhibiting a negatively polarized hydrogen atom in the BH bond. CIHB systems included interactions with Lewis acids (AlH, BH, GaH) and carbenes (CF, CCl, CBr), while DHBs were analyzed with NH, HF, HCl, and HBr.
View Article and Find Full Text PDFJ Mol Graph Model
September 2025
Department of Physics, Patan Multiple Campus, Tribhuvan University, Patandhoka, Lalitpur, 44700, Bagmati, Nepal; Department of Physics, St. Xavier's College, Maitighar, Bagmati, 44600, Kathmandu, Nepal. Electronic address:
The bioactive organosulfur compound diallyl sulfide (DAS), found in garlic and onions, was analyzed using density functional theory (DFT). DAS exhibits antimicrobial and anticancer properties, making it a potential candidate for drug discovery. Geometry optimization revealed bond lengths and angles consistent with electron delocalization.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.
A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Universidade Federal de Pernambuco, Núcleo de Tecnologia, Centro Acadêmico do Agreste, Avenida Marielle Franco, Caruaru-PE, 55014-900, Brazil.
Self-propulsion plays a crucial role in biological processes and nanorobotics, enabling small systems to move autonomously in noisy environments. Here, we theoretically demonstrate that a bound skyrmion-skyrmion pair in a synthetic antiferromagnetic bilayer can function as a self-propelled topological object, reaching speeds of up to a hundred million body lengths per second-far exceeding those of any known synthetic or biological self-propelled particles. The propulsion mechanism is triggered by the excitation of back-and-forth relative motion of the skyrmions, which generates nonreciprocal gyrotropic forces, driving the skyrmion pair in a direction perpendicular to their bond.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Quasi-1D van der Waals materials have emerged as promising candidates for flexible electronic and thermoelectric applications due to their intrinsic anisotropy, narrow band gaps, and mechanical flexibility. Herein, MXSe (M = Nb, Ta, X = Pd, Pt) nanowires are studied to understand the bonding-directed growth mechanism. Bond valence sums and binding energy analyses reveal that weak X2-Se2 interactions perpendicular to the c-axis facilitate anisotropic growth.
View Article and Find Full Text PDF