98%
921
2 minutes
20
Although cycloadditions of bicyclobutanes (BCBs) have emerged as a reliable approach for producing bicyclo[.1.1]alkanes such as azabicyclo[3.1.1]heptanes (aza-BCHeps), serving as saturated bioisosteres of arenes, the catalytic asymmetric variant remains underdeveloped and presents challenges. Herein, we developed several Lewis acid-catalyzed systems for the challenging dearomative (3+3) cycloaddition of BCBs and aromatic azomethine imines. This resulted in fused 2,3-diazabicyclo[3.1.1]heptanes, introducing a novel chemical space for the caged hydrocarbons. Moreover, an asymmetric Lewis acid catalysis strategy was devised for the (3+3) cycloadditions of BCBs and -iminoisoquinolinium ylides, forming chiral diaza-BCHeps with up to 99% yield and 97% ee. This study showcases a unique instance of asymmetric (3+3) cycloaddition facilitated by the creation of a chiral environment the activation of BCBs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575549 | PMC |
http://dx.doi.org/10.1039/d4sc06334a | DOI Listing |
J Org Chem
September 2025
Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States.
This report presents the alkynyl -Prins cyclization of Achmatowicz adducts, enabling the synthesis of up to 24 (24) highly functionalized [4.3.1] and [3.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry, Panskura Banamali College, Panskura RS, Purba Medinipur, WB 721152, India.
We report the synthesis and characterization of a new Schiff base ligand (HL), derived from 2-picolylamine and 2-hydroxy-3-methoxy-5-methylbenzaldehyde. Its reaction with Ni(NO)·6HO and Ln(NO)·HO (Ln = Gd, Tb, Dy) in the presence of triethylamine affords a carbonato-bridged family of heterobimetallic NiLn complexes: [NiLn(L)(L')(μ-CO)(NO)]·MeOH·HO (). During the complexation reaction, ligand HL undergoes an oxidation, followed by C-C coupling to generate a secondary ligand (HL').
View Article and Find Full Text PDFOrg Lett
September 2025
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529090, P. R. China.
3-Fluoropyrroles are privileged scaffolds in pharmaceutical and agrochemical applications, yet their synthesis remains challenging. Herein, we report a palladium(0)-catalyzed [4+1] cycloaddition/dehydration strategy for the efficient construction of 3-fluoropyrroles from readily available 3,3-difluoropent-4-en-2-ones and primary amines. This transformation proceeds via C-F bond activation to generate a key π-allyl-Pd(II) intermediate, followed by intramolecular addition/dehydration to furnish the heterocyclic core.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
A new synthesis route to 2,6-diazabicyclo[3.3.1]nonanes as a scaffold of conformationally restricted diamines is disclosed.
View Article and Find Full Text PDFOrg Lett
August 2025
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, University Engineering Research Center for Chemistry of Characteristic Medicinal Resources (Guangxi),
A variety of indole-fused bicyclo[3.1.1]heptanes were prepared in good yields with high regioselectivity through organocatalyzed umpolung (3+3) cycloaddition of 2-indolylmethanols and bicyclo[1.
View Article and Find Full Text PDF