98%
921
2 minutes
20
This study explores the challenges associated with nanoparticle-based drug delivery to the tumor parenchyma, focusing on the widely utilized enhanced permeability and retention effect (EPR). While EPR has been a key strategy, its inconsistent clinical success lacks clear mechanistic understanding and is hindered by limited tools for studying relevant phenomena. This work introduces an approach that employs multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a nanoscale contrast agent for noninvasive, real-time examination of tumor microenvironment characteristics. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features, (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma, and (3) be used to predict nanotherapeutic efficacy. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability. LS174T tumors consistently showed significantly different time intensity curve (TIC) parameters, including area under the rising curve (AUC, 2.7×) and time to peak intensity (TTP, 1.9×) compared to U87 tumors. Crucially, a recently developed decorrelation time (DT) parameter specific to NB CEUS dynamics successfully predicted the distribution of doxorubicin-loaded liposomes within the tumor parenchyma ( = 0.86 ± 0.13). AUC, TTP, and DT were used to correlate imaging findings to nanotherapeutic response with 100% accuracy in SKOV-3 tumors. These findings suggest that NB-CEUS parameters can effectively discern tumor vascular permeability, serving as a biomarker for identifying tumor characteristics and predicting the responsiveness to nanoparticle-based therapies. The observed differences between LS174T and U87 tumors and the accurate prediction of nanotherapeutic efficacy in SKOV-3 tumors indicate the potential utility of this method in predicting treatment efficacy and evaluating EPR in diseases characterized by pathologically permeable vasculature. Ultimately, this research contributes valuable insights into refining drug delivery strategies and assessing the broader applicability of EPR-based approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619768 | PMC |
http://dx.doi.org/10.1021/acsnano.4c11805 | DOI Listing |
Indian J Nucl Med
August 2025
Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India.
Metastatic renal osteosarcoma is a rare entity. We report a case of a 52-year-old male postright nephrectomy status presented to us with metastatic renal osteosarcoma. 18-fluorine- fluorodeoxyglucose (F-FDG) avid lesions were seen in the right renal bed with extension to adjacent hepatic parenchyma.
View Article and Find Full Text PDFJ Control Release
September 2025
Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. Electronic address:
Most chemotherapeutics distribute non-specifically throughout the body, resulting in off-target toxicities. Nanoparticle (NP) formulations provide a strategy to improve drug delivery by extending circulation time, protecting therapeutic agents from degradation, and enabling controlled release. However, delivering NPs effectively to solid tumors remains challenging due to the barriers within the tumor microenvironment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland.
The multifunctional systems presented here introduce an innovative and deeply thought-out approach to the more effective and safer use of temozolomide (TMZ) in treating glioma. The developed hydrogel-based flakes were designed to address the issues of local GBL therapy, bacterial neuroinfections, and the bleeding control needed during tumor resection. The materials obtained comprise TMZ and vancomycin (VANC) loaded into cyclodextrin/polymeric capsules and embedded into gelatin/hyaluronic acid/chitosan-based hydrogel films cross-linked with genipin.
View Article and Find Full Text PDFCureus
August 2025
Radiology, Mohammed VI University Hospital, Tangier, MAR.
The hypertrophied column of Bertin (HCB) is a benign anatomical variant of the renal cortex that may mimic a neoplastic mass, particularly on ultrasound, potentially leading to unnecessary diagnostic or surgical interventions. We report the case of a nine-year-old girl in whom a renal lesion was incidentally discovered during follow-up imaging for a post-traumatic subcapsular hematoma. Renal ultrasound revealed an isoechoic mass in the mid-portion of the left kidney, extending into the renal sinus.
View Article and Find Full Text PDFFront Oncol
August 2025
Stroke Unit, Emergency Department, Umberto I Hospital, Sapienza University of Rome, Rome, Italy.
The association between ischemic stroke (IS) and malignancy is well established. Cancer-related strokes are predominantly embolic and classified as embolic strokes of undetermined source (ESUS). While malignancy-associated coagulopathy represents the primary pathogenic mechanism, neoplastic embolization of circulating tumor cells is another potential etiology, particularly in cases of cardiac and pulmonary malignancies.
View Article and Find Full Text PDF