Data-driven explainable machine learning for personalized risk classification of myasthenic crisis.

Int J Med Inform

Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin, Germany; Radcliffe Department of Medicine, University of Oxford, Oxford, UK. Electronic address: philipp.me

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Myasthenic crisis (MC) is a critical progression of Myasthenia gravis (MG), requiring intensive care treatment and invasive therapies. Classifying patients at high-risk for MC facilitates treatment decisions such as changes in medication or the need for mechanical ventilation and helps prevent disease progression by decreasing treatment-induced stress on the patient. Here, we investigated whether it is possible to reliably classify MG patients into groups at low or high risk of MC based entirely on routine medical data using explainable machine learning (ML).

Methods: In this single-center pseudo-prospective cohort study, we investigated the precision of ML models trained with real-world routine clinical data to identify MG patients at risk for MC, and identified explainable distinctive features for the groups. 51 MG patients, including 13 MC, were used for model training based on real-world clinical data available from the hospital management system. Patients were classified to high or low risk for MC using Lasso regression or random forest ML models.

Results: The mean cross-validated AUC classifying MG patients as high or low risk for MC based on simple or compound features derived from real-world clinical data showed a predictive accuracy of 68.8% for a regularized Lasso regression and 76.5% for a random forest model. Studying feature importance across 5100 model runs identified explainable features to distinguish MG patients at high or low risk for MC. Feature importance scores suggested that multimorbidity may play a role in risk classification.

Conclusion: This study establishes feasibility and proof-of-concept for risk classification of MC based on real-world routine clinical data using ML with explainable features and variance control at the point of care. Future research on ML-based prediction of MC should include multi-center, multinational data collection, more in-depth data per patient, more patients, and an attention-based ML model to include free-text.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2024.105679DOI Listing

Publication Analysis

Top Keywords

clinical data
16
high low
12
low risk
12
explainable machine
8
machine learning
8
risk
8
risk classification
8
myasthenic crisis
8
patients
8
classifying patients
8

Similar Publications

Background: Laboratory animal veterinarians play a crucial role as a bridge between the ethical use of laboratory animals and the advancement of scientific and medical knowledge in biomedical research. They alleviate pain and reduce distress through veterinary care of laboratory animals. Additionally, they enhance animal welfare by creating environments that mimic natural habitats through environmental enrichment and social associations.

View Article and Find Full Text PDF

Dietary inflammatory index and the risk of colorectal adenomas and cancer: a systematic review and dose-response meta-analysis.

Nutr J

September 2025

Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, Zhejiang Province, China.

Background: The potential association between dietary inflammatory index (DII) and colorectal cancer (CRC) risk, as well as colorectal adenomas (CRA) risk, has been extensively studied, but the findings remain inconclusive. We conducted this systematic review and dose-response meta-analysis to investigate the relationship between the DII and CRC and CRA.

Methods: We comprehensively searched the PubMed, Embase, Cochrane Library, and Web of Science databases for cohort and case-control studies reporting the relationship between DII and CRA, or between DII and CRC, as of 15 July 2025.

View Article and Find Full Text PDF

Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).

Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.

View Article and Find Full Text PDF

Background: Recreational nitrous oxide (NO) abuse has become increasingly prevalent, raising concerns about associated health risks. In Germany, the lack of reliable data on NO consumption patterns limits the development of effective public health interventions. This study aims to address this knowledge gap by examining trends, determinants, and health consequences of NO abuse in Germany.

View Article and Find Full Text PDF

Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.

View Article and Find Full Text PDF