Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alginate forms a hydrogel via physical cross-linking with divalent cations. In literature, Ca is mostly utilized due to strong interactions but additional procedures are required to disassociate Ca-alginate hydrogels. On the other hand, Mg-alginate hydrogels disassociate spontaneously, which might benefit certain applications. This study introduces Mg-alginate as the main component of a bio-ink for the first time to obtain 3D tumor models by magnetic bio-patterning technique. The bio-ink contains magnetic nanoparticles (MNPs) for magnetic manipulation, Mg-alginate hydrogel as a sacrificial material, and cells. The applicability of the methodology is tested for the formation of 3D tumor models using HeLa, SaOS-2, and SH-SY5Y cells. Long-term cultures are examined by Live/dead and MTT analysis and revealed high cell viability. Subsequently, Collagen and F-actin expressions are observed successfully in 3D tumor models. Finally, the anti-cancer drug Doxorubicin (DOX) effect is investigated on 3D tumor models, and IC values is calculated to assess the drug response. As a result, significantly higher drug resistance is observed for bio-patterned 3D tumor models up to tenfold compared to 2D control. Overall, Mg-alginate hydrogel is successfully used to form bio-patterned 3D tumor models, and the applicability of the model is shown effectively, especially as a drug screening platform.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202400339DOI Listing

Publication Analysis

Top Keywords

tumor models
28
bio-ink magnetic
8
magnetic bio-patterning
8
mg-alginate hydrogel
8
bio-patterned tumor
8
tumor
7
models
7
development mg-alginate
4
mg-alginate based
4
based disassociative
4

Similar Publications

Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.

Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.

View Article and Find Full Text PDF

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.

View Article and Find Full Text PDF

Adrenal lipoma formation via PI(3,4,5)P/AKT-dependent transdifferentiation of adrenocortical cells into adipocytes.

Proc Natl Acad Sci U S A

September 2025

Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Adrenal lipomas are benign tumors containing ectopic adipose tissue in the adrenal gland, an organ that normally lacks both adipocytes and their progenitors. The origin of this ectopic fat remains enigmatic, and the absence of a genetic animal model has hindered its investigation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P], a key signaling lipid that regulates cellular growth and differentiation, is tightly regulated by the lipid phosphatases PTEN (phosphatase and tensin homolog) and SHIP2 (SH2-containing inositol phosphatase 2).

View Article and Find Full Text PDF

Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.

Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.

View Article and Find Full Text PDF

Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.

Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.

View Article and Find Full Text PDF