Modeling the velocity of evolving lineages and predicting dispersal patterns.

Proc Natl Acad Sci U S A

Équipe Méthodes et Algorithmes pour la Bioinformatique, Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, CNRS-UMR 5506, Montpellier 34095, France.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate estimation of the dispersal velocity or speed of evolving organisms is no mean feat. In fact, existing probabilistic models in phylogeography or spatial population genetics generally do not provide an adequate framework to define velocity in a relevant manner. For instance, the very concept of instantaneous speed simply does not exist under one of the most popular approaches that models the evolution of spatial coordinates as Brownian trajectories running along a phylogeny. Here, we introduce a family of models-the so-called Phylogenetic Integrated Velocity (PIV) models-that use Gaussian processes to explicitly model the velocity of evolving lineages instead of focusing on the fluctuation of spatial coordinates over time. We describe the properties of these models and show an increased accuracy of velocity estimates compared to previous approaches. Analyses of West Nile virus data in the United States indicate that PIV models provide sensible predictions of the dispersal of evolving pathogens at a one-year time horizon. These results demonstrate the feasibility and relevance of predictive phylogeography in monitoring epidemics in time and space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588136PMC
http://dx.doi.org/10.1073/pnas.2411582121DOI Listing

Publication Analysis

Top Keywords

velocity evolving
8
evolving lineages
8
spatial coordinates
8
velocity
5
modeling velocity
4
evolving
4
lineages predicting
4
predicting dispersal
4
dispersal patterns
4
patterns accurate
4

Similar Publications

and Pall. are traditionally used to manage cardiovascular health. However, clinical evidence evaluating standardized extracts for specific cardiovascular benefits is still evolving.

View Article and Find Full Text PDF

Rapid movements in animals depend on efficient energy transfer to overcome inertia. Among vertebrates, dense tissue and limited elastic storage are thought to impose profound constraints on power output, making extreme ballistic performance noteworthy. Here, we show that chameleons (Chamaeleonidae) and some lungless salamanders (Plethodontidae) have independently converged on a shared biomechanical solution: a sliding-based linear actuator that launches the tongue via muscular squeezing of a tapered skeletal rod.

View Article and Find Full Text PDF

We present a theoretical model to explore the dynamics and phase evolution of growing bacterial suspensions. The model described by the hydrodynamic evolution of bacterial density, orientation, and fluid velocity, incorporating birth and death terms to account for colony growth. Starting from a low-density regime, the system undergoes structural and dynamical transitions driven by bacterial proliferation, leading to the emergence of distinct phases: dilute, turbulent, and heterogenous.

View Article and Find Full Text PDF

Metastasis is an emergent continuum, driven by evolving reciprocal adaptations between continuously disseminating tumor cells (DTCs) and the specialized metastatic niches of distant organs. The interplay between intrinsic and niche-driven mechanisms that enables DTCs to survive and home to distant organs remains incompletely understood. Here, using MetTag, a single-cell barcoding and transcriptome profiling approach with time-stamped batch identifiers (BC.

View Article and Find Full Text PDF

Achieving uniform, stable, and reliable erosion of electrode materials is crucial for enhancing the performance and lifespan of vacuum-arc devices. This study investigates the rotation and erosion characteristics of cathode spots on Cu and Ti cathodes with various applied magnetic fields. The results indicate that with the discharge current changes, cathode spots evolve from a single spot to multiple spots and then back to a single spot.

View Article and Find Full Text PDF