Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Diabetes management demands precise monitoring of key biomarkers, particularly insulin (I) and glucose (G). Herein, we present a bioelectronic chip device that enables the simultaneous detection of I and G in biofluids within 2 min. This dual biosensor chip integrates aptamer-based insulin sensing with enzymatic glucose detection on a single platform, employing a four-electrode sensor chip. The insulin voltammetric sensor employs a G-quadraplex methylene-blue-modified aptamer, while the amperometric biocatalytic glucose sensor utilizes a second-generation mediator-based approach. Simultaneous reagent-less sensing of I and G has been achieved by addressing key challenges. These include combining different surface chemistries, assay formats, and detection principles at closely spaced working electrodes and the substantially different concentration levels of the I and G targets. An attractive analytical performance, with no apparent crosstalk, is demonstrated for the simultaneous detection of millimolar G concentrations and picomolar I concentrations in single microliter serum or saliva sample droplets. This dual biosensor offers rapid, cost-effective, and reliable monitoring, addressing the unmet need for integrated multiplexed diabetes biomarker detection in decentralized settings. Such integration of enzymatic and aptamer-based bioassays could greatly expand the scope of decentralized testing in healthcare beyond diabetes care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c04289 | DOI Listing |