Publications by authors named "Ada Raucci"

Timely and precise monitoring of inflammatory biomarkers is essential for the effective management of sepsis and related acute conditions. Current monitoring strategies depend mostly on centralized, benchtop systems. Here, we present compact and bioelectronic sensor platforms capable of rapid and simultaneous detection of lactate and interleukin-6 (IL-6) in human serum and interstitial fluid.

View Article and Find Full Text PDF

Cancer disparities in low- and middle-income countries (LMICs) persist because of socioeconomic inequalities and limited access to screening infrastructure, which requires equitable diagnostic solutions. As researchers, we need to develop interventions which mirror successful strategies from high-income countries (HICs) to address mortality inequalities. Routine cancer diagnosis functions as a fundamental element of effective management yet remains unavailable to numerous populations in LMICs.

View Article and Find Full Text PDF

In recent years, emerging contaminants in water, such as pesticides and pharmaceuticals, have gained significant attention, underscoring the need for innovative purification and monitoring solutions. Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has become an important environmental contaminant due to its widespread use and the poor efficiency of conventional wastewater treatment systems. This study focuses on the development of an innovative all-in-one 3D printed device for small-scale monitoring and remediation of emerging contaminants such as diclofenac, with the potential to be adapted to others as well.

View Article and Find Full Text PDF

Thrombin overexpression in serum serves as a critical biomarker and is implicated in several diseases associated with significant morbidity and mortality. Existing techniques for thrombin detection are time-consuming and require sophisticated equipment and extensive sample preparation procedures, which further delay the detection and increase the cost of the procedure. Early and accessible diagnosis at the point of care, especially in limited-resource countries, represents the first step of clinical interventions.

View Article and Find Full Text PDF

Diabetes management demands precise monitoring of key biomarkers, particularly insulin (I) and glucose (G). Herein, we present a bioelectronic chip device that enables the simultaneous detection of I and G in biofluids within 2 min. This dual biosensor chip integrates aptamer-based insulin sensing with enzymatic glucose detection on a single platform, employing a four-electrode sensor chip.

View Article and Find Full Text PDF

One of the greatest challenges for the future is represented by the conservation of global agricultural production: it is necessary to implement early monitoring of the health conditions of crops through innovative technologies that allow a sustainable development. To reach this goal, the development of portable biosensors might represent a robust strategy for monitoring agricultural sites in agreement with the requirement of precision agriculture. In this work, an electrochemical inhibition biosensor has been engineered onto a glove to quantify organophosphorus pesticides directly on fruits peels.

View Article and Find Full Text PDF

Disposable biosensors provide high portability and advantageous response time, which are crucial in the next generation of analytical platforms. Herein, we report on zeolites embedding silver clusters as an electroactive material that enhances the electrode-analyte interaction in disposable electrochemical strips made of plastic or paper. The resulting analytical platform effectively immobilizes analytes and facilitates electron exchange transfer.

View Article and Find Full Text PDF

In the era of liquid biopsy, microRNAs emerge as promising candidates for the early diagnosis and prognosis of cancer, offering valuable insights into the disease's development. Among all the existing analytical approaches, even if traditional approaches such as the nucleic acid amplification ones have the advantages to be highly sensitive, they cannot be used at the point-of-care, while sensors might be poorly sensitive despite their portability. In order to improve the analytical performance of existing electroanalytical systems, we demonstrate how a simple chromatographic paper-based disk might be useful to rationally improve the sensitivity, depending on the number of preconcentration cycles.

View Article and Find Full Text PDF

The contamination of environmental sites due to the presence of persistent species represents an important issue to be tackled. In particular, the presence of high levels of metals in soil and surface water is more frequent. One of the metals that sometimes exceeds the permissible limit set by regulatory authorities is copper.

View Article and Find Full Text PDF

Despite progress in the prevention and diagnosis of cancer, current technologies for tumor detection present several limitations including invasiveness, toxicity, inaccuracy, lengthy testing duration and high cost. Therefore, innovative diagnostic techniques that integrate knowledge from biology, oncology, medicinal and analytical chemistry are now quickly emerging in the attempt to address these issues. Following this approach, here we developed a paper-based electrochemical device for detecting cancer-derived Small Extracellular Vesicles (S-EVs) in fluids.

View Article and Find Full Text PDF

Liquid biopsies have caused a significant revolution in cancer diagnosis, and the use of point of care (PoC) platforms has the potential to bring liquid biopsy-based cancer detection closer to patients. These platforms provide rapid and on-site analysis by reducing the time between sample collection and results output. The aim of this tutorial content is to provide readers an in-depth understanding regarding the choice of the ideal sensing platform suitable for specific cancer-related biomarkers.

View Article and Find Full Text PDF

The growth of liquid biopsy, i. e., the possibility of obtaining health information by analysing circulating species (nucleic acids, cells, proteins, and vesicles) in peripheric biofluids, is pushing the field of sensors and biosensors beyond the limit to provide decentralised solutions for nonspecialists.

View Article and Find Full Text PDF

The devastating effects of global climate change on crop production and exponential population growth pose a major challenge to agricultural yields. To cope with this problem, crop performance monitoring is becoming increasingly necessary. In this scenario, the use of sensors and biosensors capable of detecting changes in plant fitness and predicting the evolution of their morphology and physiology has proven to be a useful strategy to increase crop yields.

View Article and Find Full Text PDF

The development of electrochemical strips, as extremely powerful diagnostic tools, has received much attention in the field of sensor analysis and, in particular, the detection of nucleic acids in complex matrixes is a hot topic in the electroanalytical area, especially when directed toward the development of emerging technologies, for the purpose of facilitating personal healthcare. One of the major diseases for which early diagnosis is crucial is represented by Alzheimer's disease (AD). AD is a progressive neurodegenerative disease, and it is the most common cause of dementia worldwide.

View Article and Find Full Text PDF