Rescaling perceptual hand maps by visual-tactile recalibration.

Eur J Neurosci

Cognitive Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

After concurrent visual and tactile stimuli have been presented repeatedly with a spatial offset, unisensory tactile stimuli, too, are perceived with a spatial bias towards the previously presented visual stimuli. This so-called visual-tactile ventriloquism aftereffect reflects crossmodal recalibration. As touch is intrinsically linked to body parts, we asked here whether recalibration occurs at the level of individual stimuli or at a higher, integrated, map-like level. We applied tactile stimuli to participants' hidden left hand and simultaneously presented visual stimuli with spatial offsets that, if integrated with the tactile stimuli, implied a larger hand. After recalibration, participants pointed to tactile-only stimuli and judged the distance between two tactile stimuli on the hand. The pattern of changes in tactile localization after recalibration was consistent with participants aiming at targets on an enlarged hand. This effect was evident also for new, tactile-only locations that had not been paired with visual stimuli during recalibration. In contrast, distance judgements were not consistently affected by recalibration. The generalization of recalibration to new, non-trained stimulus sites, but not across tasks and responses, suggests a link of low-level multisensory processing and map-like body representations that may, however, be purpose-specific and not organized as a general-purpose "body schema".

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733666PMC
http://dx.doi.org/10.1111/ejn.16571DOI Listing

Publication Analysis

Top Keywords

tactile stimuli
20
visual stimuli
12
stimuli
10
recalibration
8
presented visual
8
tactile
6
hand
5
rescaling perceptual
4
perceptual hand
4
hand maps
4

Similar Publications

Mimicking human brain functionalities with neuromorphic devices represents a pivotal breakthrough in developing bioinspired electronic systems. The human somatosensory system provides critical environmental information and facilitates responses to harmful stimuli, endowing us with good adaptive capabilities. However, current sensing technologies often struggle with insufficient sensitivity, dynamic response, and integration challenges.

View Article and Find Full Text PDF

Introduction: We aimed to clarify the effects of an active touch intervention using different textures on corticospinal excitability.

Methods: A total of 30 healthy individuals participated in the active touch intervention. Two tactile stimuli were used for intervention: smooth (silk) and rough (hessian) stimuli.

View Article and Find Full Text PDF

Response Characteristics of Barrel Cortical Neurons in Layers IV/V of Juvenile Rats with Autism-Like Traits after Tactile Stimulation.

Physiol Behav

September 2025

Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.

The barrel cortex is a specialized region of the primary somatosensory cortex that processes tactile information from whiskers. This study investigates how tactile stimulation (TS) affects excitatory receptive fields and surrounds suppression in barrel cortex neurons of male and female autistic-like rats, using various whisker displacement protocols. The animals were categorized into control, Valproic acid pre-treated (Val), and Val-TS treatment groups.

View Article and Find Full Text PDF

The dorsal column nuclei encode and transmit the network signatures of mechanical allodynia.

Cell Rep

September 2025

Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Electronic address:

The neural circuits that transmit the sense of pain and how pain is encoded by these circuits are still poorly understood.Mechanical allodynia is a prominent form of chronic pain characterized by painful responses to innocuous touch that develops as a consequence of nerve damage and inflammation. Here, we show that alterations to the normal log-normal distribution of neuronal activity and structure of neural correlations between neurons in the dorsal column nuclei (DCN) constitute a signature feature of mechanical allodynia, with the transmission of "allodynic" light touch information to the thalamus by somatostatin-positive projection neurons in the DCN being essential for its expression and development.

View Article and Find Full Text PDF

Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy.

ACS Sens

September 2025

The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Tactile sensing arrays play a crucial role in human-machine interaction, robotics, and artificial intelligence by enabling the perception of physical stimuli on robotic surfaces or human skin. However, skin-attachable sensor arrays still suffer from strain interference and signal crosstalk under stretching or bending, particularly on curved or deformable surfaces. Here, we present a stretchable tactile array that is both strain-insensitive and crosstalk-suppressed, achieved via a hierarchically segmented design that mitigates lateral and vertical deformations synergistically.

View Article and Find Full Text PDF