Cytotoxic effects of ivermectin on : induction of apoptosis and cell cycle arrest.

Front Microbiol

Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: is a flagellated protozoan parasite causing giardiasis, a common intestinal infection characterized by diarrhea, abdominal cramps, and nausea. Treatments employed to combat this parasitic infection have remained unchanged for the past 40 years, leading to the emergence of resistant strains and prompting the search for new therapeutic agents.

Methods: This study investigated the cytotoxic effects of ivermectin (IVM) on trophozoites. We conducted dose-response experiments to assess IVM-induced cytotoxicity. We utilized various biochemical and ultrastructural analyses to explore the underlying mechanisms of cell death, including reactive oxygen species (ROS) production, DNA fragmentation, cell cycle arrest, and apoptosis markers.

Results: Our findings demonstrate that IVM induces dose-dependent cytotoxicity and triggers cell death pathways. We found that IVM treatment generates elevated levels of reactive oxygen species (ROS), DNA fragmentation, and arrests of trophozoites in the cell cycle's S phase. Additionally, ultrastructural analysis reveals morphological alterations consistent with apoptosis, such as cytoplasmic vacuolization, chromatin condensation, and tubulin distribution.

Discussion: The insights gained from this study may contribute to developing new therapeutic strategies against giardiasis, addressing the challenge posed by drug-resistant strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560887PMC
http://dx.doi.org/10.3389/fmicb.2024.1484805DOI Listing

Publication Analysis

Top Keywords

cytotoxic effects
8
effects ivermectin
8
cell cycle
8
cycle arrest
8
cell death
8
reactive oxygen
8
oxygen species
8
species ros
8
dna fragmentation
8
cell
5

Similar Publications

Interferon-induced senescent CD8 T cells reduce anti-PD1 immunotherapy efficacy in early triple-negative breast cancer.

Sci Transl Med

September 2025

Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.

Triple-negative breast cancers (TNBCs) lack predictive biomarkers to guide immunotherapy, especially during early-stage disease. To address this issue, we used single-cell RNA sequencing, bulk transcriptomics, and pathology assays on samples from 171 patients with early-stage TNBC receiving chemotherapy with or without immunotherapy. Our investigation identified an enriched subset of interferon (IFN)-induced CD8 T cells in early TNBC samples, which predict immunotherapy nonresponsiveness.

View Article and Find Full Text PDF

The mutagenic translesion synthesis (TLS) pathway, which is critically dependent on REV1's ability to recruit inserter TLS polymerases and the POLζ extender polymerase, enables cancer cells to bypass DNA lesions while introducing mutations that likely contribute to the development of chemotherapy resistance and secondary malignancies. Targeting this pathway represents a promising therapeutic strategy. Here, we demonstrate that the expression of the C-terminal domain (CTD) of human REV1, a ca.

View Article and Find Full Text PDF

Purpose: Advanced, pre-treated TNBC has a dismal prognosis and lacks effective options beyond standard cytotoxics. We previously showed, via phosphoproteomic screening, that CDK6 and ERK hyperactivation are linked to adverse outcomes and represent actionable targets. This prompted us to evaluate palbociclib and binimetinib in advanced TNBC after one or two prior therapies.

View Article and Find Full Text PDF

Interferon-induced miR-7705 modulates the anti-virus activity of cholesterol 25-hydroxylase.

J Virol

September 2025

Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.

Unlabelled: Cholesterol 25-hydroxylase (CH25H), an interferon-stimulated gene (ISG), has been implicated in broad-spectrum antiviral immunity. Here, we identify CH25H as a potent suppressor of hepatitis B virus (HBV) replication that significantly outperforms IFN-α in reducing HBV DNA, pregenomic RNA (pgRNA), HBsAg, and HBeAg, without inducing cytotoxicity. However, CH25H is weakly expressed in hepatocytes and only modestly induced by type I interferon.

View Article and Find Full Text PDF

Background: Despite the advancements of pharmacological treatments and gauze dressings in the field of skin wound healing, these methods present numerous limitations. Therefore, developing a multifunctional material capable of efficiently promoting skin wound healing is particularly crucial.

Methods: Citric acid (CA)-modified chitosan (CS) loaded with Shikonin (SK) (CA-CS-SK) hydrogel was prepared via the freeze-thaw method.

View Article and Find Full Text PDF