98%
921
2 minutes
20
Plant richness and microbiota have been associated with plant health; hardly any studies have investigated how plant taxa differs in microbiota in the context of human health. We investigated the microbial differences in buds of 83 woody plant taxa used in urban green spaces in hemiboreal climate, using 16S rRNA and whole metagenome shotgun sequencing. Bud microbial community was the richest in Cotoneaster Nanshan and C. integerrimus, and Malus domestica cultivars "Sandra" and "Lobo" and poorest in Ribes glandulosum. Metagenomic shotgun sequencing of two M. domestica and four Ribes varieties confirmed differences in taxa in bud microbiota and indicated higher siderophore synthesis in Malus. Microbial richness, including bacteria, archaea, and viruses, and functional richness of gene pathways was higher in Malus compared to Ribes. The 10 most abundant amplicon sequence units, often referred as species, belonged to the phylum Proteobacteria. The differences between plant taxa were evident in classes Alpha- and Gammaproteobacteria, known for potential human health benefits. Since environmental microbiota contributes to human microbiota and immunoregulation, horticultural cultivars hosting rich microbiota may have human health benefits. Further studies are needed to confirm the effectiveness of microbially-oriented plant selection in optimizing human microbiota and planetary health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/lambio/ovae110 | DOI Listing |
Pestic Biochem Physiol
November 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China. Electronic ad
Mortierella spp. is emerging as a potential biocontrol agent against soil borne diseases due to its antagonistic effects on pathogens and strong environmental adaptability. However, the mechanisms by which it restructures rhizosphere microbial communities to achieve sustained pathogen suppression remain largely unresolved.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Centre for Applied Water Science, University of Canberra, ACT, Australia; Department of Zoology, University of Otago, Dunedin, New Zealand.
One mechanism for improving the resilience of freshwater systems affected by climate change is to use environmental water to support refugial habitats which allow species, ecosystems and functions to persist and recover after severe droughts. We applied systematic conservation planning (SCP) to prioritise wetlands and lakes with the aim of informing the delivery of environmental water for the creation and protection of refugia habitat in the Murray-Darling Basin, Australia. SCP uses a complimentary algorithm to generate planning solutions that protect all target ecological assets for the lowest "cost" of the management constraints considered.
View Article and Find Full Text PDFSci Total Environ
September 2025
Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, PB.901, 2050, Hammam-Lif, Tunisia. Electronic address:
Climate change is challenging agriculture and food security due to the limited adaptability of domesticated crops. While plant range shifts along latitudinal and altitudinal gradients are well-documented, their impacts on belowground microbial communities and plant adaptability remain poorly understood. Vitis vinifera subsp.
View Article and Find Full Text PDFSci Total Environ
September 2025
University of California Riverside, Department of Environmental Sciences and Environmental Toxicology Graduate Program, Riverside, CA, USA.
This exploratory study surveyed seven contaminated brownfields and Superfund sites in Southern California to identify locally adapted species tolerant of mixed organic and metal contamination under arid and semi-arid conditions. Five novel native plants, including Brickellia californica, Baccharis salicifolia, Baccharis sarothroides, Eriogonum fasciculatum, and Heterotheca grandiflora were identified as hyperaccumulators of copper (Cu), alongside a non-native species from the Asteraceae family, Helminthotheca echioides. Additional metal-accumulating plants (including native plants) for lead (Pb), chromium (Cr), arsenic (As), and nickel (Ni) were identified, and warrant further evaluation for their phytoremediation potential.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea; Microblance Inc., Daegu 41566, Republic of Korea. Electronic address:
Abandoned mines have created extensive idle areas contaminated with heavy metals (HMs). Conventional remediation methods are often costly, environmentally disruptive, and pose risks to human health. As a sustainable alternative, a biological approach utilizing metal-tolerant plant growth-promoting bacteria (mPGPBs) was employed to remediate HM-contaminated soils and assess their biological safety.
View Article and Find Full Text PDF