A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Heuristic dense reward shaping for learning-based map-free navigation of industrial automatic mobile robots. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents a map-free navigation approach for industrial automatic mobile robots (AMRs), designed to ensure computational efficiency, cost-effectiveness, and adaptability. Utilizing deep reinforcement learning (DRL), the system enables real-time decision-making without fixed markers or frequent map updates. The central contribution is the Heuristic Dense Reward Shaping (HDRS), inspired by potential field methods, which integrates domain knowledge to improve learning efficiency and minimize suboptimal actions. To address the simulation-to-reality gap, data augmentation with controlled sensor noise is applied during training, ensuring robustness and generalization for real-world deployment without fine-tuning. Training results underscore HDRS's superior convergence speed, training stability, and policy learning efficiency compared to baselines. Simulation and real-world evaluations establish HDRS-DRL as a competitive alternative, outperforming traditional approaches, and offering practical applicability in industrial settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2024.10.026DOI Listing

Publication Analysis

Top Keywords

heuristic dense
8
dense reward
8
reward shaping
8
map-free navigation
8
industrial automatic
8
automatic mobile
8
mobile robots
8
learning efficiency
8
shaping learning-based
4
learning-based map-free
4

Similar Publications