Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a novel activity-based detection strategy for matrix metalloproteinase 2 (MMP2), a critical cancer protease biomarker, leveraging a mechanism responsive to the proteolytic activity of MMP2 and its integration with CRISPR-Cas12a-assisted signal amplification. We designed a chemical translator comprising two functional units─a peptide and a peptide nucleic acid (PNA), fused together. The peptide presents the substrate of MMP2, while the PNA serves as a nucleic acid output for subsequent processing. This chemical translator was immobilized on micrometer magnetic beads as a physical support for an activity-based assay. We incorporated into our design a single-stranded DNA partially hybridized with the PNA sequence and bearing a region complementary to the RNA guide of CRISPR-Cas12a. The target-induced nuclease activity of Cas12a results in the degradation of FRET-labeled DNA reporters and amplified fluorescence signal, enabling the detection of MMP2 in the low picomolar range, showing a limit of detection of 72 pg/mL. This study provides new design principles for a broader applicability of CRISPR-Cas-based biosensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603406PMC
http://dx.doi.org/10.1021/acs.analchem.4c02622DOI Listing

Publication Analysis

Top Keywords

chemical translator
8
nucleic acid
8
synthetic protein-to-dna
4
protein-to-dna input
4
input exchange
4
exchange protease
4
protease activity
4
detection
4
activity detection
4
detection crispr-cas12a
4

Similar Publications

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

The transition from traditional animal-based approaches and assessments to New Approach Methodologies (NAMs) marks a scientific revolution in regulatory toxicology, with the potential of enhancing human and environmental protection. However, implementing the effective use of NAMs in regulatory toxicology has proven to be challenging, and so far, efforts to facilitate this change frequently focus on singular technical, psychological or economic inhibitors. This article takes a system-thinking approach to these challenges, a holistic framework for describing interactive relationships between the components of a system of interest.

View Article and Find Full Text PDF

Oridonin mitigates bacterial pneumonia by regulating mitochondrial integrity and ferroptosis via targeting KEAP1/NRF2 signaling.

Biochem Pharmacol

September 2025

Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, 310015 Hangzhou, China. Electronic address:

Methicillin-resistant Staphylococcus aureus (MRSA) is a highly virulent and drug-resistant pathogen frequently causing bacterial pneumonia. Currently, there are limited effective treatments available due to the rapidly evolving resistance of bacteria. Therefore, there is an urgent need to develop novel therapies that focus on host-pathogen interactions.

View Article and Find Full Text PDF

In recent years, the incidence of orthopedic diseases has increased significantly, while traditional treatments often face limitations such as limited efficacy and pronounced side effects. The development of nanomedicine technology provides novel strategies for orthopedic disease treatment. As an emerging two-dimensional (2D) nanomaterial, black phosphorus nanosheets (BPNS) demonstrate remarkable potential in treating orthopedic diseases due to their unique physicochemical properties, superior biocompatibility, and the fact that their degradation product-elemental phosphorus-constitutes an essential component of bone tissue.

View Article and Find Full Text PDF

Amorphous silicon resistors enable smaller pixels in photovoltaic retinal prosthesis.

J Neural Eng

September 2025

Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, California, 94305, UNITED STATES.

Clinical trials of the photovoltaic subretinal prosthesis PRIMA demonstrated feasibility of prosthetic central vision with resolution matching its 100 μm pixel width. To improve prosthetic acuity further, pixel size should be decreased. However, there are multiple challenges, one of which is related to accommodating a compact shunt resistor within each pixel that discharges the electrodes between stimulation pulses and helps increase the contrast of the electric field pattern.

View Article and Find Full Text PDF