98%
921
2 minutes
20
Despite decades of recovery, soil carbon in heavily burned areas has failed to reach pre-fire levels. It is unclear whether stand management practices can promote soil organic carbon accumulation at such sites. This study evaluated the changes in soil labile organic carbon (LOC) fractions (including dissolved organic carbon (DOC), microbial biomass carbon (MBC), and easily oxidizable organic carbon (EOC)) and the carbon pool management index (CPMI) after the thinning of a heavily burned area in the Daxing'an Mountains and selected sample plots. This study compared thinned birch secondary forests (17 years (17a-S), 14 years (14a-U), 2 years (2a-S) post-thinning, where 17a-S and 2a-S were strip thinned and 14a-U was uniform thinned) with unthinned control (CK) plots. The contents of soil LOC and CPMI at a depth of 0-10 cm were found to increase with thinning, indicating that thinning promoted the accumulation of soil organic carbon in secondary forests in heavily burned areas. The two-way ANOVA showed that the differences in C fractions and CPMI at different times after thinning were significant, whereas the differences between thinning methods were not significant. In comparison to CK, only the DOC content was found to be significantly elevated at 2a-S. However, at both 14a-U and 17a-S, the elevation of the LOC fraction content reached a significant level. Among them, 14a-U demonstrated the most pronounced improvement (DOC (+11.37%), MBC (+42.80%), and EOC (+19.51%)). The CPMI at the 0-10 cm depth also increased significantly (18.20% ∼ 27.77%) at 14a-U. The study revealed that soil bulk density and understorey vegetation biomass were the main influences on the changes in soil LOC fractions and CPMI post-thinning. This finding also indicates that greater attention should be given not only to the soil itself but also to the understorey vegetation during forest soil carbon restoration under conservation management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123273 | DOI Listing |
Environ Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDFJ Org Chem
September 2025
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
Halogen atom transfer (XAT) is a pivotal strategy for generating carbon-centered radicals in organic chemistry, yet current methodologies often rely on toxic tin-based reagents or inefficient organosilanes. This study explores diazaphosphinyl (-heterocyclic phosphinyl, NHP) radicals as new halogen abstractors, leveraging their nucleophilic and halophilic properties. We synthesized a series of NHP-X (X = Cl or Br) compounds, systematically determining their P-X bond energies and related redox potentials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.
is a thermophilic acetogenic bacterium capable of thriving at elevated temperatures up to 66°C. It metabolizes carbohydrates such as glucose, mannose, and fructose and can also grow lithotrophically utilizing hydrogen (H) and carbon dioxide (CO) or carbon monoxide (CO), with acetate serving as its main product. A simple and efficient genome editing system for would not only facilitate the understanding of the physiological function of enzymes involved in energy and carbon metabolism but also enable metabolic engineering.
View Article and Find Full Text PDFChemSusChem
September 2025
Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
Organic battery electrode materials represent a sustainable alternative compared to most inorganic electrodes, yet challenges persist regarding their energy density and cycling stability. In this work, a new organic electrode material is described, which is obtained via ionothermal polymerization of low-cost starting materials, melem (2,5,8-triamino-tri-s-triazine) and perylenetetracarboxylic dianhydride (PTCDA). The resulting networked polymer Melem-PDI exhibits favorable thermal and electrochemical properties, prompting investigation into its performance as a positive electrode material in rechargeable lithium and magnesium batteries.
View Article and Find Full Text PDF