A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Trade-offs between Cd bioconcentration and translocation and underlying physiological and rhizobacterial mechanisms in Phragmites australis. | LitMetric

Trade-offs between Cd bioconcentration and translocation and underlying physiological and rhizobacterial mechanisms in Phragmites australis.

J Environ Manage

Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cadmium (Cd) pollution poses a significant threat to wetland ecosystems. Phragmites australis, a species with intraspecific ploidy diversity, is commonly used in constructed wetlands for pollution remediation. However, little is known about how the ploidy variation of P. australis influences the phytoremediation processes via physiological and rhizosphere regulations. Here, we used P. australis from two major lineages in China (i.e., tetraploid lineage O and octoploid lineage P) and applied three Cd treatments (control, low Cd concentration, and high Cd concentration). We found that the lineage O had a bioconcentration factor of Cd approximately 40% higher than that of the lineage P. The translocation factor of the lineage P was about 300% higher than that of the lineage O. These suggest that the lower ploidy lineage exhibited a greater capacity to absorb Cd from the environment into the underground part compared to the higher ploidy lineage, and the higher ploidy lineage demonstrated a superior ability in transferring Cd from the underground to the aboveground part. The advanced transpiration system in the higher ploidy lineage can contribute to its enhanced ability to translocate Cd, as the translocation factor of Cd was significantly correlated with the base shoot diameter and the transpiration rate, both notably higher in the lineage P. The rhizobacterial community associated with the lineage P displayed a more intense response to Cd, characterized by an increase in both the diversity of the community and the number of varied bacterial functions following the addition of Cd. Our study offers profound insights into the ecological consequences of intraspecific polyploidization and the application of intraspecific ploidy variation in environmental management and wetland restoration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123291DOI Listing

Publication Analysis

Top Keywords

ploidy lineage
16
lineage
12
higher lineage
12
higher ploidy
12
phragmites australis
8
intraspecific ploidy
8
ploidy variation
8
translocation factor
8
ploidy
7
higher
6

Similar Publications