98%
921
2 minutes
20
Introduction: Diabesity, characterized by obesity-driven Type 2 diabetes mellitus (T2DM), arises from intricate genetic and environmental interplays that induce various metabolic disorders. The systemic lipid and glucose homeostasis is controlled by an intricate cross-talk of internal glucose/insulin and fatty acid molecules to maintain a steady state of internal environment.
Methods: In this study, were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients to delve into the mechanistic foundations of diabesity. Various assays were conducted to measure intracellular triglyceride levels, lifespan, pharyngeal pumping rate, oxidative stress indicators, locomotor behavior, and dopamine signaling. Proteomic analysis was also performed to identify differentially regulated proteins and dysregulated KEGG pathways, and microscopy and immunofluorescence staining were employed to assess collagen production and anatomical integrity.
Results: Worms raised on diets high in glucose and cholesterol exhibited notably increased intracellular triglyceride levels, a decrease in both mean and maximum lifespan, and reduced pharyngeal pumping. The diabesity condition induced oxidative stress, evident from heightened ROS levels and distinct FT-IR spectroscopy patterns revealing lipid and protein alterations. Furthermore, impaired dopamine signaling and diminished locomotors behavior in diabesity-afflicted worms correlated with reduced motility. Through proteomic analysis, differentially regulated proteins encompassing dysregulated KEGG pathways included insulin signaling, Alzheimer's disease, and nicotinic acetylcholine receptor signaling pathways were observed. Moreover, diabesity led to decreased collagen production, resulting in anatomical disruptions validated through microscopy and immunofluorescence staining.
Discussion: This underscores the impact of diabesity on cellular components and structural integrity in , providing insights into diabesity-associated mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557309 | PMC |
http://dx.doi.org/10.3389/fendo.2024.1383520 | DOI Listing |
Ecotoxicol Environ Saf
September 2025
Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Wanjiang Emerging Industry Technology Development Center, Tongling 244000, China; Collaborative Innovatio
Metab Eng
September 2025
Department of Chemical Engineering, the Pennsylvania State University, University Park, Pennsylvania, USA; Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA. Electronic address:
Clostridium thermocellum is an increasingly well-studied organism with considerable advantages for consolidated bioprocessing towards ethanol production. Here, a genome-scale resource balance analysis (RBA) model of C. thermocellum, ctRBA, is reconstructed based on a recently published stoichiometric model (iCTH669), global proteomics, and C MFA datasets to analyze proteome allocation and the burden imposed on metabolism with regard to ethanol yield and titer.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China. Electronic address:
Ethnopharmacological Relevance: Curcuma wenyujin was first recorded in the Tang Dynasty's Xinxiu Bencao and has been traditionally used to treat blood stasis syndrome. Its active component curdione exhibits antiplatelet effects, though its anticoagulant mechanisms remain unclear and require further investigation.
Aim Of The Study: To investigate the anticoagulant activity of curdione, identify potential targets through integrated screening, and elucidate the underlying mechanisms.
Brain Behav Immun
September 2025
Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: The proteome is a valuable resource for pinpointing therapeutic targets. Therefore, we conducted a proteome-wide Mendelian randomization (MR) study aimed at identifying potential protein markers and therapeutic targets for Anti-N-Methyl-D-Aspartate Receptor Encephalitis (NMDAR-E).
Methods: Protein quantitative trait loci (pQTLs) were obtained from seven published genome-wide association studies (GWASs) focusing on the plasma proteome, resulting in summary-level data for 734 circulating protein markers.
Mol Cell Proteomics
September 2025
Systems Biology Initiative, School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, UNSW Sydney, Australia. Electronic address:
Phosphorylation of histone lysine demethylases is an important mechanism by which the cell modulates chromatin dynamics to regulate its response to stress. There is evidence that the Saccharomyces cerevisiae H3K36me2/3 demethylase, Rph1p, is an integrator of many signalling events. However, the regulatory function of most Rph1p phosphosites in stress response pathways remains unknown.
View Article and Find Full Text PDF