98%
921
2 minutes
20
In this study, we investigate the feasibility of designing reconfigurable transmitting metasurfaces through the use of Drude-like scatterers with purely electric response. Theoretical and numerical analyses are provided to demonstrate that the response of spherical Drude-like scatterers can be tailored to achieve complete transmission, satisfying a generalized Kerker's condition at half of their plasma frequency. This phenomenon, which arises from the co-excitation of the electric dipole and the electric quadrupole within the scatterer, also exhibits moderate broadband performance. Subsequently, we present the application of these particles as meta-atoms in the design of reconfigurable multipolar Huygens metasurfaces, outlining the technical prerequisites for achieving effective beam-steering capabilities. Finally, we explore a plausible implementation of these low-loss Drude-like scatterers at microwave frequencies using plasma discharges. Our findings propose an alternative avenue for Huygens metasurface designs, distinct from established approaches relying on dipolar meta-atoms or on core-shell geometries. Unlike these conventional methods, our approach fosters seamless integration of reconfigurability strategies in beam-steering devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.526048 | DOI Listing |
In this study, we investigate the feasibility of designing reconfigurable transmitting metasurfaces through the use of Drude-like scatterers with purely electric response. Theoretical and numerical analyses are provided to demonstrate that the response of spherical Drude-like scatterers can be tailored to achieve complete transmission, satisfying a generalized Kerker's condition at half of their plasma frequency. This phenomenon, which arises from the co-excitation of the electric dipole and the electric quadrupole within the scatterer, also exhibits moderate broadband performance.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
Institute for Quantum Matter and Department of Physics and Astronomy, John Hopkins University, Baltimore, Maryland 21218, USA.
The mechanism of superconductivity in materials with aborted ferroelectricity and its emergence out of a dilute metallic phase in systems like doped SrTiO_{3} is an outstanding issue in condensed matter physics. This dilute metal has anomalous properties that are both similar and different to those found in the normal state of other unconventional superconductors. For instance, T^{2} resistivity can be found at densities that are too small to allow current decay through electron-electron scattering.
View Article and Find Full Text PDFPhys Rev E
June 2022
Universität Rostock, Institut für Physik, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany.
We investigate the thermopower and Lorenz number of hydrogen with Kohn-Sham density functional theory (DFT) across the plasma plane toward the near-classical limit, i.e., weakly degenerate and weakly coupled states.
View Article and Find Full Text PDFSci Adv
April 2022
Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
Electronic transport in the regime where carrier-carrier collisions are the dominant scattering mechanism has taken on new relevance with the advent of ultraclean two-dimensional materials. Here, we present a combined theoretical and experimental study of ambipolar hydrodynamic transport in bilayer graphene demonstrating that the conductivity is given by the sum of two Drude-like terms that describe relative motion between electrons and holes, and the collective motion of the electron-hole plasma. As predicted, the measured conductivity of gapless, charge-neutral bilayer graphene is sample- and temperature-independent over a wide range.
View Article and Find Full Text PDFSci Rep
April 2020
Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
In this paper, we study the effect of restoration force caused by the limited size of a small metallic nanoparticle (MNP) on its linear response to the electric field of incident light. In a semi-classical phenomenological Drude-like model for small MNP, we consider restoration force caused by the displacement of conduction electrons with respect to the ionic positive background taking into account a free coefficient as a function of diameter of nanoparticle (NP) in the force term obtained by the idealistic Thomson model in order to adjust the classical approach. All important mechanisms of the energy dissipation such as electron-electron, electron-phonon and electron-NP surface scatterings and radiation are included in the model.
View Article and Find Full Text PDF