The Development, Essence and Perspective of Nitrogen Reduction to Ammonia.

Adv Mater

College of Chemistry, Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ammonia plays a pivotal role in agriculture and meanwhile holds promising potential as an energy vector for the hydrogen economy, where the nitrogen reduction to ammonia is a critical pathway for achieving sustainable development. Over the past hundred years, ammonia synthesis has undergone several breakthrough developments from Haber-Bosch process to photo/electro-catalysis and Li-mediated strategy, but still faces the challenges of low yield rate, selectivity and efficiency. Therefore, there is a pressing demand to develop efficient and green ammonia synthesis from nitrogen. This review summarizes the development of the nitrogen reduction to ammonia, highlighting six milestones during the whole journey. From the development direction, this work finds and extracts the essence of ammonia synthesis, that is the reaction pathways are affected by the energy barrier of reaction intermediates, which can be altered by proton sources, auxiliaries and catalysts. Then this work discusses the detailed overview of the significant development of proton source, auxiliaries and catalysts. Finally, based on the essence, the possible opportunities of ammonia synthesis from nitrogen reduction are presented, including the design of new ammonia synthesis pathways and efficient catalysts. The deep insight of nitrogen reduction to ammonia will provide a design guidance for efficient ammonia synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202410909DOI Listing

Publication Analysis

Top Keywords

ammonia synthesis
24
nitrogen reduction
20
reduction ammonia
16
ammonia
11
synthesis nitrogen
8
auxiliaries catalysts
8
nitrogen
6
synthesis
6
development
5
reduction
5

Similar Publications

Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.

View Article and Find Full Text PDF

Halophilic heterotrophic ammonia assimilation biosystem shows stronger resilience and decreased ARGs abundance under sulfamethoxazole gradient stress compared with halophilic nitrification biosystem.

J Hazard Mater

September 2025

School of Civil Engineering, Shandong University, Jinan 250061, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, Jinan 250061, China. Electronic address:

Differences of niche and nitrogen metabolism between halophilic nitrification (AN) and heterotrophic ammonia assimilation (HAA) biosystems determine microbiome resilience and antibiotic resistance genes (ARGs) transfer under antibiotic stress. However, the underlying mechanism of this difference remains unclear. This study compared the bioresponses and ARGs characteristics of the two biosystems under sulfamethoxazole (SMX) stress.

View Article and Find Full Text PDF

Towards durable photocatalytic seawater splitting: design strategies and challenges.

Chem Commun (Camb)

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070

Photocatalytic seawater splitting (PSWS), which utilizes abundant solar and ocean resources, is one of the most promising technologies for sustainable hydrogen production. However, the complex composition of seawater significantly limits the durability and activity of photocatalysts. In this review, we first identify the primary factors that contribute to photocatalyst deactivation during PSWS, including chloride induced corrosion and loss of active sites, and light shielding caused by precipitation of metal cation salts.

View Article and Find Full Text PDF

Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.

View Article and Find Full Text PDF

The aim of this experiment was to determine the effects of walnut (Juglans regia L.) green husk (WGH) supplemented to ration on rumen fermentation by in vitro gas production technique. WGH was supplemented at different ratios (0%, 2%, 4%, 6%, 8%, and 10%) to the total mixture ration formed from 80%/20% roughage/concentrate feed.

View Article and Find Full Text PDF