Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The NK-92MI cell line has displayed significant promise in clinical trials for cancer treatment. However, challenges persist in obtaining sufficient cell quantities and achieving optimal cytotoxicity. The proliferation of natural killer (NK) cells involves the formation of cell aggregates, but excessively large aggregates can impede nutrient and waste transport, leading to reduced cell survival rates. In this study, a custom bioreactor was designed to mimic pseudostatic culture conditions by integrating brief mechanical rotation during a 6-h static culture period. This method aimed to achieve an optimal aggregate size while improving cell viability. The findings revealed a 144-fold expansion of 3D NK-92MI cell aggregates, reaching an ideal size of 80-150 µm, significantly increasing both cell proliferation and survival rates. After 14 days of culture, the NK-92MI cells maintained their phenotype during the subsequent phase of cell activation. Moreover, these cells presented elevated levels of IFN-γ expression after IL-18 activation, resulting in enhanced NK cell-mediated cytotoxicity against K562 cells. This innovative strategy, which uses a closed suspension-based culture system, presents a promising approach for improving cell expansion and activation techniques in immunocellular therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555828PMC
http://dx.doi.org/10.1186/s13036-024-00461-0DOI Listing

Publication Analysis

Top Keywords

nk-92mi cell
12
cell
10
immunocellular therapy
8
cell aggregates
8
survival rates
8
improving cell
8
high-throughput proliferation
4
activation
4
proliferation activation
4
nk-92mi
4

Similar Publications

Mitochondrial DNA (mtDNA) damage and accumulation activate the cGAS-STING DNA-sensing pathway, which promotes immune clearance of tumor cells. Maintenance of the cytosolic level of mtDNA is key to sustain immune activation. T cell malignancies (T-CMs) are a general name of diseases with abnormal clonal proliferation of T lymphocytes at various stages.

View Article and Find Full Text PDF

Natural killer (NK) cells play a crucial role in immune surveillance against melanoma, yet they frequently exhibit dysfunction in the tumor microenvironment. This study aims to establish an NK cell activation-related prognostic signature and identify potential druggable targets to overcome NK cell dysfunction. : A prognostic signature was developed using the TCGA-SKCM cohort and validated across independent datasets.

View Article and Find Full Text PDF

Natural killer (NK) cells are an important innate defense against malignancies, and exogenous sources of NK cells have been developed as anti-cancer agents. Nevertheless, the apparent limitations of NK cells in clearing cancers have suggested that their efficacy might be augmented by combination with other treatments. We have developed cell-penetrating peptides that target the transcription factors ATF5, CEBPB, and CEBPD and that promote apoptotic cancer cell death both in vitro and in vivo without apparent toxicity to non-transformed cells.

View Article and Find Full Text PDF

Background: Targeted therapies directed at tumor immune checkpoint, like programmed death-ligand (PD-L)1/programmed death (PD)-1, have shown remarkable progress. Nevertheless, treatment efficacy in hepatocellular carcinoma (HCC) is notably compromised due to the intricate immune microenvironment. Exploring alternative checkpoints beyond PD-L1/PD-1, including those not located on the cell surface, may improve our understanding of their roles in areas like diagnostic potential and immune tolerance in HCC.

View Article and Find Full Text PDF

Advances in cancer therapies have significantly improved patient survival; however, tumors enriched in cancer stem cells (CSCs) have poor treatment responses. CSCs are a key source of tumor heterogeneity, contributing to therapeutic resistance and unfavorable patient outcomes. In the tumor microenvironment (TME), cell-in-cell (CIC) structures, where one cell engulfs another, have been identified as markers of poor prognosis.

View Article and Find Full Text PDF