Optimization of grinding parameters in robotic-assisted preparation of cracked teeth based on fracture mechanics: FEA and experiment.

Comput Methods Programs Biomed

National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School of Stomatology, Beijing, 100081, PR China; Peking University School of Stomatology, Peking, 100081, PR China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objectives: If left untreated, cracked teeth can lead to tooth loss, of which the incidence is 70%. Dental preparation is an effective treatment, but it is difficult to meet the clinical requirements when traditionally prepared by dentists. Grinding-based tooth preparation robot (TPR) shows promise for clinical applications to assist dentists. However, current TPR has problems with chipping and crack extension when preparing real teeth.

Methods: We propose a grinding parameter optimization strategy to solve this problem, specifically including preparation depth and direction. Among them, surface morphology observation technology and thermal-mechanical coupling simulation technology are used. Through theoretical modeling, computer simulation techniques and surface morphology experimental studies, different motion parameters are compared and analyzed to derive the optimal preparation parameters.

Results: One of our contributions is to control the preparation depth based on the different material removal methods, and the brittle removal methods and grinding heat during the preparation process were reduced. Another contribution is to derive the stress intensity factor (SIF) at the crack tip for different preparation directions based on multi-grit and thermal-mechanical coupling finite element model for different preparation stages. The preparation direction was directed and crack extension was minimized. Finally, the experimental system of the TPR was constructed. Based on the proposed morphology and preparation direction optimization method, the material removal method during the preparation process can be controlled in plastic removal. Crack extension was also reduced based on different stages of optimized preparation directions. Based on the guided strategy, the TPR can provide safe assisted dentists.

Conclusions: In this work, the preparation parameters of the cracked preparation robot were optimized to enable it to perform the preparation of hard and brittle cracked teeth. The surface morphology met the clinical requirements. Intraoral preparation will be considered in the future to advance the robot toward clinical dental applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2024.108485DOI Listing

Publication Analysis

Top Keywords

preparation
17
cracked teeth
12
crack extension
12
surface morphology
12
clinical requirements
8
preparation robot
8
preparation depth
8
thermal-mechanical coupling
8
material removal
8
removal methods
8

Similar Publications

Access to Cyclic Aliphatic Sulfonyl Fluorides via Diels-Alder Cycloaddition.

J Org Chem

September 2025

Pharmaron Drug Discovery Services Europe, Pharmaron UK Ltd., West Hill Innovation Park, Hertford Road, Hoddesdon EN11 9FH, United Kingdom.

Sulfur(VI) fluoride exchange (SuFEx) compounds are gaining increasing attention due to their various applications. We present the Diels-Alder reaction of ethenesulfonyl fluoride and analogues to rapidly access cyclic and bicyclic SuFEx derivatives in moderate to good yields. These derivatives have been shown to be useful intermediates in a variety of synthetic transformations to expand the toolkit for the preparation of cyclic aliphatic sulfonyl fluorides.

View Article and Find Full Text PDF

Objective: This study applied the Theoretical Domains Framework (TDF) to explore the barriers and enablers to optimizing post-operative pain management and supporting safe opioid use from the perspectives of both patients and health care professionals, applying the Theoretical Domains Framework (TDF).

Design: Experience-based co-design (EBCD) qualitative study.

Methods: In the initial phase of the EBCD approach, focus groups were conducted comprising 20 participants, including 8 patients and 12 health care professionals involved in post-operative care.

View Article and Find Full Text PDF

The development of synthetically-useful biocatalysts requires characterizing the behavior of an enzyme under conditions amenable to preparative-scale reactions. Whole cells harboring the catalyst of interest are often used in such reactions, as protein purification is laborious and expensive. However, monitoring reaction rates when using whole cells is challenging, as cellular debris precludes the use of a continuous assay.

View Article and Find Full Text PDF

Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive cancer with poor response to standard chemotherapy. In search of new therapeutic leads, a library of 435 fractions prepared from the Irish marine biorepository was screened against 2 ABC-DLBCL cell lines (TMD8 and OCI-Ly10) and a non-cancerous control cell line (CB33). Active fractions are prioritized based on potency and selectivity.

View Article and Find Full Text PDF