98%
921
2 minutes
20
Induction of oxidative stress and the associated lipid peroxidation is a prevalent mechanism through which certain metal(loid)s exert nephrotoxic effects in mammals. Research on the toxic impacts of metal(loid)s in free-ranging large mammals at high trophic positions is exceedingly rare, yet crucial for understanding environmental exposure scenarios relevant to both human and animal risk assessment. Renal cortex tissues (N = 457) of free-ranging brown bears (Ursus arctos) from the Dinara-Pindos population sampled in Croatia were analysed herein for toxic metal(loid)s and the underlying biological and environmental drivers of variation, with their time trend monitored during the 2009-2022 period. In 28 individuals from the 2021-2022 period, we additionally investigated associations between metal(loid)s and oxidative stress and damage biomarkers in renal cortex cells. The principal generalized linear models used to approximate variations in biomarkers of oxidative stress and damage included non-essential As, Cd, Pb, Tl and U, and essential Co, Cu, Fe and Zn. Age class and season of sampling had no impact on biomarker levels, except for lipid peroxidation, LP (April ↑). Age, sex (females ↑), body condition index (↓) and season of sampling significantly influenced metal(loid)s levels. Non-specific mammalian thresholds were crossed for Cd and Pb toxicity in 1-16% and 2% of population, respectively. Renal levels of metal(loid)s did not exhibit a clear trend over the 13-year period. The levels found in this study were higher than in sympatric carnivorous and herbivorous species, but in line with findings in ursids worldwide. Potential adverse health effects from environmental exposure in brown bears may arise from disruption of oxidative balance, as evidence clearly indicated associated changes in catalase activity (↑), glutathione content (↑), LP (↓), reactive oxygen species (↓), total antioxidant capacity (↑) in the renal cortex due to the presence of the most toxicologically relevant Cd and Pb.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.125285 | DOI Listing |
ESC Heart Fail
September 2025
Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.
Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.
View Article and Find Full Text PDFNeurol Res
September 2025
Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.
Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.
Mol Nutr Food Res
September 2025
Center For Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.
Silkworms are emerging as a sustainable food source to address global food security, with their proteins recognized for nutritional and medicinal benefits. However, the impact of silkworm oil on immunological and pharmacological effects remains unexplored. This study explores the effects of the muga (Antheraea assamensis Helfer) silkworm pupal oil fraction (MP) on palmitic acid (PA) induced hepatic steatosis, inflammation, and oxidative stress.
View Article and Find Full Text PDFBiomater Sci
September 2025
College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China.
Polyphenols, rich in phenolic structures, are widely found in plants and known for disturbing the cellular oxidative stress and regulating the signal pathways of tumor proliferation and metastasis, making them valuable in cancer therapy. Polyphenols display high adherence due to the presence of phenolic hydroxyl groups, which enables the formation of covalent and non-covalent interactions with different materials. However, nonspecific adhesion of polyphenols carries significant risks in applications as polyphenols might adhere to proteins and polysaccharides in the bloodstream or gastrointestinal tract, leading to thrombosis and lithiasis.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Reference Center for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.
Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.
View Article and Find Full Text PDF