98%
921
2 minutes
20
Background And Objective: Mutations in KRAS and NRAS are predictive of poor response to cetuximab and panitumumab, two anti-epidermal growth factor receptor (EGFR) monoclonal antibodies used in metastatic colorectal cancer (mCRC). Our objective was to explore the value of using KRAS and NRAS mutation status to inform third-line anti-EGFR therapy for mCRC using the value of heterogeneity (VOH) framework.
Methods: We used administrative data to identify mCRC patients who were potentially eligible for third-line therapy in 2006-2019 in British Columbia (BC), Canada. We compared three alternative stratification policies in place during the study period: the unstratified policy where anti-EGFR therapy was not offered (2006-2009), stratification by KRAS mutation (2009-2016), and stratification by KRAS+NRAS mutation (2016-2019). We used inverse-probability-of-treatment weighting to balance covariates across the three groups. Cost and survival time were calculated using a 3-year time horizon and adjusted for censoring, with bootstrapping to characterize uncertainty. Mean net monetary benefit (NMB) was calculated at a range of threshold values. The VOH of using KRAS and NRAS mutation status to inform treatment selection was calculated as the change in NMB with increasing stratification, under current (static VOH) or perfect (dynamic VOH) information.
Results: We included 2664 patients in the analysis. At a willingness-to-pay of CA$100,000/ life-year gained (LYG), stratification on KRAS mutation status provided a static VOH of CA$1565 per patient; further stratification on KRAS+NRAS provided additional static VOH of CA$594. The static VOH exceeded the marginal cost of genomic testing under both policies.
Conclusions: Stratification of anti-EGFR therapy by KRAS and NRAS mutation status can provide additional value at a threshold of CA$100,000/LYG. There is diminishing marginal value and increasing marginal costs as the policy becomes more stratified. The VOH framework can illustrate the value of subgroup-specific decisions in a comprehensive way, to better inform targeted treatment policies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40258-024-00926-9 | DOI Listing |
Front Oncol
August 2025
Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
Introduction: Metastatic colorectal cancer (mCRC) exhibits significant heterogeneity in molecular profiles, influencing treatment response and patient outcomes. Mutations in v-raf murine sarcoma viral oncogene homolog B1 () and rat sarcoma () family genes are commonly observed in mCRC. Though originally thought to be mutually exclusive, recent data have shown that patients may present with concomitant and mutations, posing unique challenges and implications for clinical management.
View Article and Find Full Text PDFPediatr Dev Pathol
September 2025
The Hospital for Sick Children, Division of Pathology, Toronto, Canada.
Background: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. For stratification purposes, rhabdomyosarcoma is classified into fusion-positive RMS (alveolar rhabdomyosarcoma) and fusion-negative RMS (embryonal or spindle cell/sclerosing, FN-RMS) subtypes according to its fusion status. This study aims to highlight the pathologic and molecular characteristics of a cohort of FN-RMS using a targeted NGS RNA-Seq assay.
View Article and Find Full Text PDFESMO Open
September 2025
Department of Medical Oncology, Kanazawa University Hospital, Kanazawa, Japan. Electronic address:
Background: Resistance to alectinib, the standard first-line therapy for anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC), remains a major clinical challenge. This study aimed to investigate resistance mechanisms using next-generation sequencing (NGS) of plasma cell-free DNA (cfDNA).
Materials And Methods: Plasma samples from 67 patients in the alectinib group of the J-ALEX study were collected at baseline, on day 57, and at treatment discontinuation.
Biology (Basel)
July 2025
Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
Proto-oncogenes in the superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades of research, poor outcomes in advanced cancers reveal gaps in understanding Ras-driven mechanisms or therapeutic strategies.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.
Hepatocytes (HCs), which share a developmental origin with cholangiocytes (CCs), have the capacity to undergo reparative reprogramming into CCs in response to liver injury and, under specific conditions, can also transform malignantly into cholangiocarcinoma (CCA). However, the molecular mechanisms governing HC plasticity in liver diseases remain poorly understood. In this study, we investigated the role of , an oncofetal transcription factor, in both malignant and regenerative HC fate transitions toward the biliary lineage.
View Article and Find Full Text PDF