98%
921
2 minutes
20
Boreal forests form the largest terrestrial biome globally. Climate change is expected to induce large changes in vegetation of high latitude ecosystems, but there is considerable uncertainty about where, when, and how those changes will occur. Such vegetation change produces major feedback to the climate system, including by modifying albedo (reflectivity). Our study used the LANDIS-II forest landscape model to project forest dynamics on four representative landscapes (1 M ha) for 280 years into the future under a range of climate scenarios across a broad latitudinal gradient in Siberia. The model estimated the albedo of the vegetation and any snow on each landscape grid-cell through time to quantify surface albedo change in response to climate change and disturbances. We found that the shortening of the snow-covered season (winter) decreased annual average albedo dramatically, and climate change facilitated the invasion of tundra by boreal trees in the northernmost landscape (reducing albedo in all seasons). However, in other landscapes, albedo increased in summer due to disturbances (fire, wind, insects, harvest), eliminating or reducing leaf area in the short-term, and in the mid-term by promoting more reflective forest types (deciduous, light conifers). This increased albedo was somewhat ephemeral and under climate change was overwhelmed by the shortening of the snow-covered season that greatly reduced albedo. We conclude that the primary driver of the overall reflectivity of boreal ecosystems is not vegetation, but rather, the length of the snow-covered season. Because climate change is likely to dramatically shorten the snow season, the concurrent reduction of albedo has the potential to act as a powerful positive feedback for climate change. Managing natural and anthropogenic disturbances may be the only tool with potential to mitigate the reduction of albedo by climate change in boreal ecosystems because management to encourage more reflective forest types has relatively small effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177043 | DOI Listing |
Plant Commun
September 2025
School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:
The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.
View Article and Find Full Text PDFAdv Nutr
September 2025
Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, 715 Sumter Street, CLS 513C, SC 29208, USA.
Human activities contribute to large shifts in the global climate, with far-reaching impacts on ecosystems, societies, and human health. Modern food systems-designed to produce convenience foods that tend to have high inflammatory potential-exacerbate environmental degradation and shape the interwoven challenges of climate, nutrition, and health. Over the past three decades, extreme weather has worsened and poor diets have led to more inflammation-related health problems-two parallel trends that are exposing system-wide weaknesses and harming global health.
View Article and Find Full Text PDFMar Environ Res
August 2025
Marine Macroecology and Biogeography Lab, Universidade Federal de Santa Catarina, Brazil.
Transition zones exhibit a unique combination of abiotic characteristics derived from the merging of two distinct areas, hosting communities with different thermal tolerance and distribution ranges. Given these characteristics, these zones are key to unmasking the effects of climate change on biodiversity since rapid changes in the sea temperature can favor some populations more than others. This study aimed to investigate the community structure of reef fish in seven islands of the southwestern Atlantic in a transition zone.
View Article and Find Full Text PDFSci Total Environ
September 2025
Environmental Change Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Finland.
Small lakes are common across the Boreal-Arctic zone. Due to shallowness and high shoreline-surface area ratios, they are abundant in aquatic macrophytes. Vegetated littoral zones have been suggested to count as wetlands when quantifying carbon sinks and sources, but the actual magnitude of aquatic vegetation is seldom quantified.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium.
Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.
View Article and Find Full Text PDF