98%
921
2 minutes
20
Characterizing co-formulated monoclonal antibodies (mAbs) poses significant challenges in the pharmaceutical industry. Due to the high structural similarity of the mAbs, traditional analytical methods, compounded by the lengthy method development process, hinder product development and manufacturing efficiency. There is increasing critical need in the pharmaceutical industry to streamline analytical approaches, minimizing time and resources, ensuring a rapid clinical entry and cost-effective manufacturing. This study investigates the application of process analytical technologies (PAT) to address such challenges. Our investigation introduces two complementary technologies, on-line ultra-performance liquid chromatography (online UPLC) and multimode fluorescence spectroscopy (MMFS), as potential PAT tools tailored for characterizing critical quality attributes (CQA) in co-formulated mAb products. Specifically, the CQAs under evaluation include the total protein concentration of the mAbs within the co-formulation and the ratio of mAb A to mAb B. Online UPLC enables direct and automated measurement of the CQAs through physical separation, while MMFS determines them in a non-destructive and more swift manner based on chemometric modeling. We demonstrate these technologies' comparable performance to conventional methods, alongside substantial benefits such as reduced analytical turnaround time and decreased laboratory efforts. Ultimately, integrating them as innovative PAT tools expedites the delivery of therapeutic solutions to patients and enhances manufacturing efficiency, aligning with the imperative for swift translation of scientific discoveries into clinical benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.28881 | DOI Listing |
Int J Phytoremediation
September 2025
Department of Fashion and Textile Design, College of Arts and Design, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
In this paper, lignin was chemically extracted from fibers and modified with branched polyethyleneimine (BPEI) and the resulting samples were applied for the adsorption of two anionic dyes; Acid red 183 (AR183) and Acid blue 25 (AB25) from aqueous suspension. Analytical characterization methods including SEM, FT-IR, TGA/DTG, and XRD were used to analyze the studied samples. The images of the extracted lignin displayed a rough feature.
View Article and Find Full Text PDFAnal Chem
September 2025
Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful analytical technique with a wide range of applications. To support the analysis of diverse and complex samples, various NMR tools and accessories have been created. Three-dimensional (3D) printing is an underutilized production method for NMR hardware, mainly due to the lack of H NMR background-free resins.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
One of the most important puzzles in atmospheric chemistry is the long-lifetime of HO˙ in spite of its low-stabilization energy. In the present work, we have estimated the lifetime of HO˙ using classical dynamics simulations by coupling an available neural-network analytical potential energy surface with a chemical dynamics program. The simulation results clearly indicate that at room temperature, the lifetime of HO˙ can exceed 1 μs under collision-free conditions.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
September 2025
Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
Fruit and fruit-based products are a valuable source of essential nutrients, critical for food security, and drive economic productivity with minimal inputs. The significant rise in global demand for high-quality imported fruit and fruit-based products reflects a shift in consumer awareness and interest in the products origin and potential health-promoting bioactive compounds. Analytical techniques such as liquid chromatography, gas chromatography, inductively coupled plasma techniques, isotope-ratio mass spectrometry (IRMS), near infrared (NIR) spectroscopy, visible near infrared (VIS-NIR) spectroscopy, hyperspectral imaging (HSI), mid-infrared (MIR) spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, terahertz spectroscopy, dielectric spectroscopy, electronic nose (e-nose), and electronic tongue (e-tongue) coupled with supervised and unsupervised chemometrics can be employed for traceability, authentication, and bioactive profiling of fruit and fruit-based products.
View Article and Find Full Text PDFJAACAP Open
September 2025
Stanford University, Stanford, California.
Objective: To assess biological factors associated with anhedonia in depression and amotivation in cannabis use (PROSPERO: CRD42023422438).
Method: A systematic review was conducted of 8 electronic databases. Inclusion criteria included original research studies that investigated the association of biological factors or behavioral tasks with depression combined with concepts of anhedonia or cannabis combined with concepts of amotivation including apathy.