A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Histone demethylase JMJD1C advances macrophage foam cell formation and atherosclerosis progression by promoting the transcription of PCSK9. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macrophage is considered as a critical driving factor in the progression of atherosclerosis (AS), and epigenetic heterogeneity contributes important mechanisms in this process. Here, we identified that a histone demethylase jumonji domain-containing protein 1 C (JMJD1C) is a promising biomarker for atherosclerotic cerebral infarction through clinical analysis. Then, AOPE mice fed with a high fat diet and RAW264.7 cells induced by oxidized low-density lipoprotein (ox-LDL) were used as AS models to verify the function of JMJD1C in AS development in vivo and in vitro. JMJD1C knockdown significantly reduced plaque area, inflammation and endothelial damage in AS model mice, and also alleviated foam cell formation, inflammatory cytokines production and cell apoptosis in ox-LDL-treated RAW264.7 cells. Mechanistically, JMJD1C promoted the transcription of proprotein convertase subtilisin/kexin type 9 (PCSK9) through mediating H3 Lysine 9 demethylation. The effects of JMJD1C knockdown on ox-LDL-induced macrophages were blocked by PCSK9 overexpression. Altogether, our study proves that JMJD1C advances macrophage foam cell formation, inflammation and apoptosis to accelerate AS progression through H3 demethylation of PCSK9. The findings underscore the important role of JMJD1C-mediated histone modification in macrophage regulation and AS progression, which brings a new insight into the pathobiology of AS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13105-024-01058-3DOI Listing

Publication Analysis

Top Keywords

foam cell
12
cell formation
12
histone demethylase
8
jmjd1c advances
8
advances macrophage
8
macrophage foam
8
raw2647 cells
8
jmjd1c knockdown
8
jmjd1c
7
demethylase jmjd1c
4

Similar Publications