98%
921
2 minutes
20
Background: Shell strength is an important trait in peanuts that impacts shell breakage and yield. Despite its significance, the genetic basis of shell strength in peanuts remains largely unknown, and the current methods for rating this trait are qualitative and subjective. This study aimed to investigate the genetics of shell strength using a segregating recombinant-inbred-line (RIL) population derived from the hard-shelled cultivar 'Hanoch' and the soft-shelled cultivar 'Harari'.
Results: Initially, a quantitative method was developed using a texture analyzer, focusing on the proximal part of isolated shells with a P/5 punching probe. This method revealed significant differences between Hanoch and Harari. Shell strength was then measured in 235 RILs across two distinct environments, revealing a normal distribution with some RILs exhibiting shell strength values beyond those of the parental lines, indicating transgressive segregation. Analysis of variance indicated significant effects for the RILs, with no effects of block or year, and a broad-sense heritability estimate of 0.675, indicating a substantial genetic component. Using an existing genetic map, we identified three QTLs for shell strength, with one major QTL (qSSB02) explaining 18.7% of the phenotypic variation. The allelic status of qSSB02 corresponded significantly with cultivar designation for in-shell or shelled types over four decades of Israeli peanut breeding. Physical and compositional analyses revealed that Hanoch has a higher shell density than Harari, rather than any difference in shell thickness, and is associated with increased levels of lignin, cellulose, and crude fiber.
Conclusions: These findings provide valuable insights into the genetic and compositional factors that influence shell strength in peanut, laying a foundation for marker-assisted selection in breeding programs focused on improving pod hardness in peanuts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536784 | PMC |
http://dx.doi.org/10.1186/s12870-024-05727-9 | DOI Listing |
Sci Total Environ
September 2025
Laboratoire Physico-Chimie des Matériaux, Substances Naturelles et Environnement, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco.
Escalating concentrations of norfloxacin (NFX) in surface and wastewaters demand sustainable remediation strategies. In this study, dual-functional hydrochars were synthesized from argan nut shells (ArNS) via hydrothermal carbonization (HTC), with process conditions optimized by varying temperature (150-200 °C) and residence time (2-6 h). Among the materials, H1:5@150-4-prepared at 150 °C for 4 h with a biomass-to-water ratio of 1:5-exhibited the best performance, achieving a monolayer NFX adsorption capacity of 27.
View Article and Find Full Text PDFThe development of novel optical self-healing materials holds significant importance for applications in anticounterfeiting and information encryption, but remains a formidable challenge. This study presents a fluorescent self-healing material designed for 2D/3D printing anticounterfeiting applications, exhibiting outstanding properties such as high transmittance, excellent mechanical strength, and remarkable self-healing efficiency. The triple dynamic bond networks provide robust mechanical and self-healing capabilities, with the polymer demonstrating a tensile strength of 26.
View Article and Find Full Text PDFNanoscale
September 2025
School of Chemical Engineering, Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
Electronic capacitor films based on polymer matrices and inorganic nanofillers capable of storing more energy play a crucial role in advanced modern electrical industries and devices. Herein, a series of nanocomposite films composed of "core-shell-dot" BNNs-PDA@Ag hybrid structures with multiple breakdown strength enhancement mechanisms as fillers and methyl methacrylate--glycidyl methacrylate (MG) copolymers as matrices were successfully synthesized. The introduced 2D and wide-bandgap BNNs not only enhanced the breakdown strength by taking advantage of their excellent physical properties, but also further improved their energy storage properties both at ambient and elevated temperatures through the formation of deeper traps at the organic-inorganic interface.
View Article and Find Full Text PDFPoult Sci
August 2025
Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, N1G2W1 Canada; Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, Ontario N1G2W1 Canada. Electronic address:
Laying hens possess a calcium-specific appetite that intensifies towards lights out to meet the high demands for eggshell formation and skeletal maintenance. Pecking blocks (PBs) are edible enrichments that can serve as an additional calcium source. We explored the relationships between PB preference (PBp), PB use, keel fracture status (KS), and eggshell quality.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China. Electronic address:
The polyunsaturated fatty acids in fish oil are prone to oxidation and have poor dispersibility, which limits their use in the food sector. In this work, oil-in-water emulsions stabilized by chitin nanocrystals (ChNC) were prepared via high-speed homogenization. Anionic carboxymethyl cellulose (CMC) was assembled onto cationic ChNC-stabilized emulsion droplet surfaces via layer-by-layer self-assembly technology to construct ChNC/CMC (Ch-C) bilayer emulsions with rigid inner layer and flexible outer shell structures.
View Article and Find Full Text PDF