98%
921
2 minutes
20
PTSD is a complex mental health condition triggered by individuals' traumatic experiences, with long-term and broad impacts on sufferers' psychological health and quality of life. Despite decades of research providing partial understanding of the pathobiological aspects of PTSD, precise neurobiological markers and imaging indicators remain challenging to pinpoint. This study employed VBM analysis and machine learning algorithms to investigate structural brain changes in PTSD patients. Data were sourced ADNI-DoD database for PTSD cases and from the ADNI database for healthy controls. Various machine learning models, including SVM, RF, and LR, were utilized for classification. Additionally, the VICI was proposed to enhance model interpretability, incorporating SHAP analysis. The association between PTSD risk genes and VICI values was also explored through gene expression data analysis. Among the tested machine learning algorithms, RF emerged as the top performer, achieving high accuracy in classifying PTSD patients. Structural brain abnormalities in PTSD patients were predominantly observed in prefrontal areas compared to healthy controls. The proposed VICI demonstrated classification efficacy comparable to the optimized RF model, indicating its potential as a simplified diagnostic tool. Analysis of gene expression data revealed significant associations between PTSD risk genes and VICI values, implicating synaptic integrity and neural development regulation. This study reveals neuroimaging and genetic characteristics of PTSD, highlighting the potential of VBM analysis and machine learning models in diagnosis and prognosis. The VICI offers a promising approach to enhance model interpretability and guide clinical decision-making. These findings contribute to a better understanding of the pathophysiological mechanisms of PTSD and provide new avenues for future diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343395 | PMC |
http://dx.doi.org/10.1007/s10278-024-01313-5 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Nephrol
September 2025
School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFOdontology
September 2025
Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.