A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning-based optimization of photogrammetric JRC accuracy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To improve the accuracy of photogrammetric joint roughness coefficient (JRC) estimation, this study proposes two optimization models based on ground sample distance (GSD), point density, and the root mean square error (RMSE) of checkpoints. First, an algorithm that automatically generates spatial positions for equipment based on the convergence strategy was developed, using principles of Structure from Motion and Multi-View Stereo (SfM-MVS) and the shooting parameter selection algorithm (SPSA). Second, a portable positioning plate containing ground control points and checkpoints was designed based on optical principles, and a moving camera capture strategy guided by SPSA was proposed. Combining SPSA, portable positioning plate, and moving camera capture strategy, a photogrammetric experiment for small-scale rock samples in the field was conducted, collecting 48 datasets with different shooting parameters. Subsequently, a dataset incorporating GSD, point density, RMSE, and three JRC estimation metrics was established, revealing their correlations and sensitivities. Using seven machine learning algorithms, optimization models for photogrammetric JRC accuracy were developed, with Linear Multidimensional Regression and Gaussian Process Regression models improving JRC accuracy by an average of 85.73%. Finally, the applicability and limitations of the newly proposed method were further discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535202PMC
http://dx.doi.org/10.1038/s41598-024-77054-wDOI Listing

Publication Analysis

Top Keywords

jrc accuracy
12
photogrammetric jrc
8
jrc estimation
8
optimization models
8
gsd point
8
point density
8
portable positioning
8
positioning plate
8
moving camera
8
camera capture
8

Similar Publications