Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Global environmental pollution and rapid climate change have become a serious matter of concern. Remarkable spatial and seasonal variations have been observed due to rapid industrialization, urbanization, different festive occasions, etc. Among all the existing pollutants, the fine airborne particles (with aerodynamic equivalent diameter ) and (with aerodynamic equivalent diameter ) are associated with chronic diseases. This leads to carry out the study regarding the varying relationship between and other associated factors so that its concentration level might be under control. Existing literature has explored the geographical association between the pollutants and a few other important factors. To address this problem, the present study aims to explore the wide spatio-temporal relationships between the particulate matter ( ) with the other associated factors (e.g., socio-demographic, meteorological factors, and air pollutants). For this analysis, the geographically weighted regression (GWR) model with different kernels (viz. Gaussian and Bisquare kernels) and the ordinary least squares (OLS) model have been carried out to analyze the same from the perspective of the four major seasons (i.e., autumn, winter, summer, and monsoon) in different districts of India. It may be inferred from the results that the local model (i.e., GWR model with Bisquare kernel) captures the spatial heterogeneity in a better way and their performances have been compared in terms of values ( in all cases) and corrected Akaike information criterion ( ) (maximum value and minimum value ). It has been revealed that there is a strong negative impact between forest coverage and PM pollution in northern India during the major seasons. The same has been found in Delhi, Haryana, and a few districts of Rajasthan during the 1-year cycle (October 2022-September 2023). It has also been found that PM concentration levels become high over the specified period with the temperature drop in Delhi, Uttar Pradesh, etc. Moreover, a strong positive association is visible in PM pollution level with the total population.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-024-13333-3DOI Listing

Publication Analysis

Top Keywords

spatial seasonal
8
aerodynamic equivalent
8
equivalent diameter
8
associated factors
8
gwr model
8
major seasons
8
factors
5
seasonal association
4
association study
4
study contributing
4

Similar Publications

Diversity and assembly mechanisms of zooplankton communities in freshwater aquaculture ponds.

Mar Life Sci Technol

August 2025

State Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China.

Unlabelled: Ecological succession is vital for forecasting ecosystem responses to environmental changes and their future states. Zooplankton, a primary natural food source in aquaculture, plays a crucial role in maintaining ecosystem function. Thus, understanding how zooplankton communities respond to environmental changes is essential for economic and ecological outcomes.

View Article and Find Full Text PDF

Unlabelled: High infestation levels of small hive beetle (SHB), , can cause more damage to honeybee, , host colonies. However, the spatiotemporal variation of SHB infestations is poorly understood. Here, we show that SHB infestations can be equally high in native and invasive ranges, suggesting that differences between host populations are the key criterion for damage.

View Article and Find Full Text PDF

Urban green areas are vital yet underexplored reservoirs of microbial diversity in cities. This study examines myxomycete communities in Zijin Mountain National Forest Park, a subtropical urban forest in Nanjing, China, across four seasons and multiple forest types. Combining field collections and moist chamber cultures, we documented 60 species from 906 occurrence records.

View Article and Find Full Text PDF

The northern South China Sea (SCS) shelf and southern Taiwan Strait (TS) are dynamic marginal seas influenced by both freshwater discharge from the Pearl River and seasonal coastal upwelling. These interacting hydrological forces shape ecological gradients that affect marine planktonic communities. Planktonic foraminiferal assemblages were analyzed from plankton tow and surface sediment samples collected during three cruises (2018, 2020, and 2022) along a ∼1000 km transect extending from the Pearl River estuary to the southern TS.

View Article and Find Full Text PDF

Alpine ecosystems are critical for water regulation but highly sensitive to climate change. In the Three-River Source Region (TRSR) of the Qinghai-Tibet Plateau, changes in temperature, precipitation, and large-scale ecological restoration have significantly altered vegetation phenology-including the start (SOS), end (EOS), and length (LOS) of the growing season, as well as vegetation growth status (GS). These shifts affect hydrological processes such as evapotranspiration, soil moisture, snowmelt, and runoff.

View Article and Find Full Text PDF