98%
921
2 minutes
20
Extending the stability of ether solvents is pivotal for developing low-temperature and high-voltage lithium batteries. Herein, we elucidate the oxidation behavior of tetrahydrofuran with ternary BF , PF and difluoro (oxalato) borate anions and the evolution of interfacial solvation environment. Combined in situ analyses and computations illustrate that the ion dipole interactions and the subsequent formation of ether-Li-anion complexes in electrolyte rearrange the oxidation order of solvated species, which enhances the electrochemical stability of ether solvent. Furthermore, preferential absorption of anions on the surface of high-voltage cathode favors the formation of a solvent-deficient electric double layer and an anti-oxidation cathode electrolyte interphase, inhibiting the decomposition of tetrahydrofuran. Remarkably, the formulated electrolyte based on ternary anion and tetrahydrofuran solvent endows the LiNiCoMnO cathode with considerable rate capability of 5.0 C and high capacity retention of 93.12 % after 200 cycles. At a charging voltage of 4.5 V, the Li||LiNiCoMnO cells deliver Coulombic efficiency above 99 % at both 25 and -30 °C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202415853 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Soft Matter Sciences and Engineering, CNRS, École supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Paris 75005, France.
The sliding motion of aqueous droplets on hydrophobic surfaces leads to charge separation at the trailing edge, with implications from triple-line friction to hydrovoltaic energy generation. Charges deposited on the solid surface have been attributed to ions or electrons ripped off from the liquid drop. However, the dynamics and exact physicochemical nature of these surface-trapped charges remains poorly explored.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
High entropy electrolytes show great potential in the design of next generation batteries. Demonstrating how salt components of high entropy electrolytes influence the charge storage performance of batteries is essential in the tuning and design of such advanced electrolytes. This study investigates the transport and interfacial properties for lithium hexafluorophosphate (LiPF) in ethylene carbonate and dimethyl carbonate (EC/DMC) solvent with commonly used additives for high entropy electrolytes (LiTFSI, LiDFOB, and LiNO).
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry Education and Graduate Department of Chemical Materials, Pusan National University, Busan 46241, Republic of Korea.
Alkali salt-doped ionic liquids are emerging as promising electrolyte systems for energy applications, owing to their excellent interfacial stability. To address their limited ionic conductivity, various strategies have been proposed, including modifying the ion solvation environment and enhancing the transport of selected ions (e.g.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering, École Polytechnique Fédéralede Lausanne (EPFL), Lausanne 1015, Switzerland.
The challenge to produce multicarbon (C) products in high current densities in the electrochemical reduction of carbon dioxide (CORR) has motivated intense research. However, the ability of solvated cations to tune and activate water for C production in the CORR has been overlooked. In this study, we report the incorporation of a covalently grown layer of functionalized phenyl groups on the Cu surface that leads to a 7-fold increase in ethylene production (to -530 mA cm) and a 6-fold increase in C products (to -760 mA cm).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of
High-voltage lithium metal batteries (LMBs) have emerged as ideal candidates for achieving high-energy-density energy storage devices. Notably, high-reactive lithium metal and high-voltage transition metal oxide cathodes require electrolytes with superior electrochemical stability and interfacial compatibility. Herein, a solvent chemistry electrolyte design strategy is proposed that a weakly-solvated fluorinated bis(2,2,2-trifluoroethyl) carbonate (TFEC) was introduced into carbonate electrolyte for enhanced high voltage performance.
View Article and Find Full Text PDF