A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mechanically durable plant-based composite surface towards enhanced antifouling properties. | LitMetric

Mechanically durable plant-based composite surface towards enhanced antifouling properties.

J Colloid Interface Sci

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The biofouling adhering to underwater facilities has a negative impact on the environment, energy, and economic development. However, conventional anti-adhesion organic silicon and organic fluorine materials often have poor adhesion properties and mechanical stability when combined with substrates. This work presents a novel strategy for preparing composite antifouling coatings that low surface energy plant-based carnauba wax (CW) covering through rough substrates and chemically bond with flexible polydimethylsiloxane (PDMS) oligomers or polymers. The CW coating adheres strongly to the substrate owing to the mobility of the liquated CW, which flows into the micro-nano structure of the substrate and solidifies on the solid surface. The polymerization reaction of (PDMS) oligomers compounded the coating, thereby creating a composite coating with superior lubricating and antifouling properties. This distinctive bonding process imbued the coating with exceptional characteristics, including remarkable mechanical stability in destructive tests as well as an impressive ability to repel fouling, such as protein attachment, bacterial adhesion, diatom deposition, and biofilm formation. This work systematically investigated the impact of the composition and structure of composite materials on their mechanical stability and resistance to fouling, and developed high-performance antifouling coatings in the real world.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.10.106DOI Listing

Publication Analysis

Top Keywords

mechanical stability
12
antifouling properties
8
antifouling coatings
8
pdms oligomers
8
mechanically durable
4
durable plant-based
4
composite
4
plant-based composite
4
composite surface
4
surface enhanced
4

Similar Publications