A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Learning super-resolution and pyramidal convolution residual network for vehicle re-identification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vehicle re-identification (Vehicle Re-ID) aims at retrieving and tracking the specified target vehicle with multiple other cameras, which can provide help in checking violations and catching fugitives, but there are still the following problems that need to be solved urgently. First, the existing collected Vehicle Re-ID data often have low resolution and blur in local regions, so that the Vehicle Re-ID algorithm cannot accurately extract subtle feature representations. In addition, small features are easy to cause the disappearance of features under the operation of a large convolution kernel, which makes the model unable to capture and learn subtle features, resulting in inaccurate judgment of vehicles. In this study, we propose a Vehicle Re-ID method based on super resolution and pyramidal convolution residual network. Firstly, a super-resolution image generation network leveraging generative adversarial networks (GANs) is proposed. This network employs both content loss and adversarial loss as optimization criteria, ensuring an efficient transformation from a low-resolution image into a super-resolution counterpart, while meticulously preserving intricate high-frequency details. Then, multi levels of pyramidal convolution operations are designed to generate multi-scale features, which can capture information on different scales. Moreover, the concept of residual learning is applied between the multi levels of pyramidal convolution operations to expedite model optimization and enhance recognition capabilities. Ultimately, the double pyramidal convolutions are meticulously employed on both the original image and the super-resolution image, yielding low-noise feature representations and intricate semantic information respectively. By seamlessly fusing these two diverse sources of information, the resultant combined features exhibit heightened discrimination capabilities and significantly bolster the robustness of image features. In order to verify the effectiveness of the proposed method, extensive experiments are carried out on VeRi-776 and VehicleID datasets. The experimental results show that the method proposed in this paper effectively captures the detail information of vehicle images, accurately distinguishes the subtle differences between different vehicles of the same type, and is superior to state-of-the-art methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532507PMC
http://dx.doi.org/10.1038/s41598-024-77973-8DOI Listing

Publication Analysis

Top Keywords

pyramidal convolution
16
vehicle re-id
16
convolution residual
8
residual network
8
vehicle
8
vehicle re-identification
8
re-identification vehicle
8
feature representations
8
super-resolution image
8
image super-resolution
8

Similar Publications