Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Knowledge of how animals respond to weather and changes in their physical environment is increasingly important, given the higher frequency of extreme weather recorded in recent years and its forecasted increase globally. Even species considered to be highly adapted to extremes of weather, as albatrosses are to strong winds, may be disadvantaged by shifts in those extremes. Tracked albatrosses were shown recently to avoid storms and the strongest associated winds. The drivers of this response are so far unknown, though we hypothesize that turbulent storm conditions restrict foraging success, possibly by reducing the detectability or accessibility of food, and albatrosses divert toward more profitable conditions where possible. We tested the impact of the physical environment-wind speed, rainfall, water clarity, and time of day-on feeding activity and success of two species of albatrosses with contrasting foraging strategies. We tracked 33 wandering and 48 black-browed albatrosses from Bird Island (South Georgia) with GPS and immersion loggers, and 19 and 7 individuals, respectively, with stomach-temperature loggers to record ingestions, providing an in-depth picture of foraging behavior. Reduced foraging profitability (probability of prey capture and overall mass) was associated with stormy conditions, specifically strong winds and heavy rain in surface-seizing wandering albatrosses, and the probability of prey capture was reduced in strong winds in black-browed albatrosses. We show that even highly wind-adapted species may frequently encounter conditions that make foraging difficult, giving context to storm avoidance in albatrosses. VIDEO ABSTRACT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2024.10.018DOI Listing

Publication Analysis

Top Keywords

strong winds
16
albatrosses
9
foraging success
8
black-browed albatrosses
8
probability prey
8
prey capture
8
foraging
6
strong
4
winds reduce
4
reduce foraging
4

Similar Publications

Impact of airborne litterfall on radiocesium redistribution in areas adjacent to forests.

J Environ Radioact

September 2025

Forestry Solutions Technical Department, Asia Air Survey Co., Ltd., Kawasaki-City, Kanagawa, Japan.

Following the 2011 Fukushima Daiichi Nuclear Power Plant accident, radiocesium (Cs) was deposited across forested areas. While internal cycling is well known, lateral transfer via litterfall remains unclear. This study quantified Cs dispersal from Japanese cedar and deciduous broad-leaved forests using collectors set up to 20 m beyond the forest edge.

View Article and Find Full Text PDF

The prospective for conflict between wildlife conservation and human interference are apparent from many restricted areas. The animals changed behavioral response to human presence can be considered as a tool/index to measure the disturbance. This study is an attempt to find out the strength of animal's behavioural responses to human intruders through disturbance distance of Indian rhinoceros in Kaziranga National Park and help in fulfilling the dynamic function.

View Article and Find Full Text PDF

This study establishes a quantitative framework using field observations and normal mode theory to reveal wind field control mechanisms over ambient noise vertical directionality in shallow water. Acoustic data from a vertical line array in the northern South China Sea, combined with sound speed profiles, seabed properties, and multi-source wind fields (ERA5 reanalysis/Weibull-distributed synthetics), demonstrate: (1) A 20-km spatial noise-energy threshold (>90% energy contribution), challenging conventional near-field assumptions (1-2 km); (2) frequency-dependent distribution: low-frequency (50-200 Hz) directionality depends on near-field sources, while high-frequency (>400 Hz) energy shifts seaward due to modal cutoff variations; (3) model validation shows 0.96 correlation at 100 Hz/100 km (stratified medium accuracy), but seabed interface waves induce 3.

View Article and Find Full Text PDF

Silk properties of Asian weaver ant changes over time: an understanding of nest protection from natural calamities.

Naturwissenschaften

September 2025

Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Ballygunge, Kolkata, 700019, West Bengal, India.

Insect silk is a naturally occurring protein that forms semicrystalline threads when exposed to air. The Asian weaver ant, Oecophylla smaragdina (Formicidae: Hymenoptera), frequently uses silks for leaf weaving in nest construction to maintain its integrity and durability. The silk imparts resilience and durability to the nests, preventing fracturing or breaking during many natural disasters, particularly heavy rainfall and strong winds.

View Article and Find Full Text PDF

Here we present the study of 48 new dinoflagellate cyst assemblages from the west Antarctic shelf sediments on a wide longitudinal scale, with a greater representation of ice-proximal sites, and provide a comprehensive overview of their distributional patterns and multiple environmental forcing factors. We find a strong spatial heterogeneity in the dinoflagellate cyst distribution patterns; 1) the northern Antarctic Peninsula region is dominated by Islandinium? minutum, Selenopemphix antarctica and Brigantedinium spp. in association with meltwater-induced stratification and high diatom productivity, 2) the Bellingshausen-Amundsen Seas is dominated by Gymnodinium microreticulatum and Selenopemphix sp.

View Article and Find Full Text PDF